References

Aarts, E., S. Van Buuren, and L. E. Frank. 2010. A Novel Method to Obtain the Treatment Effect Assessed for a Completely Randomized Design: Multiple Imputation of Unobserved Potential Outcomes. Utrecht: Master thesis. University of Utrecht.

Abayomi, K., A. Gelman, and M. Levy. 2008. “Diagnostics for Multivariate Imputations.” Journal of the Royal Statistical Society C 57 (3): 273–91.

Agresti, A. 1990. Categorical Data Analysis. New York: John Wiley & Sons.

Aitkin, M., B. Francis, J. Hinde, and R. Darnell. 2009. Statistical Modelling in R. Oxford: Oxford University Press.

Akande, O., F. Li, and J. P. Reiter. 2017. “An Empirical Comparison of Multiple Imputation Methods for Categorical Data.” The American Statistician 71 (2): 162–70.

Ake, C. F. 2005. “Rounding After Multiple Imputation with Non-Binary Categorical Covariates.” In Proceedings of the Sas Users Group International (Sugi), 30:112–30.

Akl, E. A., K. Shawwa, L. A. Kahale, T. Agoritsas, R. Brignardello-Petersen, J. W. Busse, A. Carrasco-Labra, et al. 2015. “Reporting Missing Participant Data in Randomised Trials: Systematic Survey of the Methodological Literature and a Proposed Guide.” BMJ Open 5 (12): e008431.

Albert, A., and J. A. Anderson. 1984. “On the Existence of Maximum Likelihood Estimates in Logistic Regression Models.” Biometrika 71 (1): 1–10.

Allan, F. E., and J. Wishart. 1930. “A Method of Estimating the Yield of a Missing Plot in Field Experiment Work.” Journal of Agricultural Science 20 (3): 399–406.

Allison, P. D. 2005. “Imputation of Categorical Variables with PROC MI.” In Proceedings of the Sas Users Group International (Sugi), 30:113–30.

———. 2010. Survival Analysis Using Sas: A Practical Guide. 2nd ed. Cary, NC: SAS Press.

Allison, T., and D. Cicchetti. 1976. “Sleep in Mammals: Ecological and Constitutional Correlates.” Science 194 (4266): 732–34.

Andridge, R. R. 2011. “Quantifying the Impact of Fixed Effects Modeling of Clusters in Multiple Imputation for Cluster Randomized Trials.” Biometrical Journal 53 (1): 57–74.

Andridge, R. R., and R. J. A. Little. 2010. “A Review of Hot Deck Imputation for Survey Non-Response.” International Statistical Review 78 (1): 40–64.

Angrist, J. D. 2004. “Treatment Effect Heterogeneity in Theory and Practice.” The Economic Journal 114 (494): C52–C83.

Arnold, B. C., and S. J. Press. 1989. “Compatible Conditional Distributions.” Journal of the American Statistical Association 84 (405): 152–56.

Arnold, B. C., E. Castillo, and J. M. Sarabia. 1999. Conditional Specification of Statistical Models. New York: Springer.

———. 2002. “Exact and Near Compatibility of Discrete Conditional Distributions.” Computational Statistics & Data Analysis 40 (2): 231–52.

Asparouhov, T., and B. O. Muthén. 2010. “Multiple Imputation with Mplus.” Mplus Web Notes.

Audigier, V., and M. Resche-Rigon. 2018. ‘Micemd‘: Multiple Imputation by Chained Equations with Multilevel Data. https://CRAN.R-project.org/package=micemd.

Audigier, V., F. Husson, and J. Josse. 2016. “Multiple Imputation for Continuous Variables Using a Bayesian Principal Component Analysis.” Journal of Statistical Computation and Simulation 86 (11): 2140–56.

———. 2017. “MIMCA: Multiple Imputation for Categorical Variables with Multiple Correspondence Analysis.” Statistics and Computing 27 (2): 501–18.

Audigier, V., I. R. White, S. Jolani, T. P. A. Debray, M. Quartagno, J. R. Carpenter, S. Van Buuren, and M. Resche-Rigon. 2018. “Multiple Imputation for Multilevel Data with Continuous and Binary Variables.” Statistical Science 33 (2): 160–83.

Austin, P. C. 2008. “Bootstrap Model Selection Had Similar Performance for Selecting Authentic and Noise Variables Compared to Backward Variable Elimination: A Simulation Study.” Journal of Clinical Epidemiology 61 (10): 1009–17.

Aylward, D. S., R. A. Anderson, and T. D. Nelson. 2010. “Approaches to Handling Missing Data Within Developmental and Behavioral Pediatric Research.” Journal of Developmental & Behavioral Pediatrics 31 (1): 54–60.

Bang, K., and J. M. Robins. 2005. “Doubly Robust Estimation in Missing Data and Causal Inference Models.” Biometrics 61 (4): 962–72.

Barnard, J., and D. B. Rubin. 1999. “Small-Sample Degrees of Freedom with Multiple Imputation.” Biometrika 86 (4): 948–55.

Bartlett, J. W., and R. Keogh. 2018. ‘Smcfcs‘: Multiple Imputation of Covariates by Substantive Model Compatible Fully Conditional Specification.

Bartlett, J. W., S. R. Seaman, I. R. White, and J. R. Carpenter. 2015. “Multiple Imputation of Covariates by Fully Conditional Specification: Accommodating the Substantive Model.” Statistical Methods in Medical Research 24 (4): 462–87.

Bartlett, M. S. 1978. An Introduction to Stochastic Processes. 3rd ed. Press Syndicate of the University of Cambridge.

Bates, D. M., M. Mächler, B. Bolker, and S. Walker. 2015. “Fitting Linear Mixed-Effects Models Using ‘Lme4‘.” Journal of Statistical Software 67 (1): 1–48. doi:10.18637/jss.v067.i01.

Bárcena, M. J., and F. Tusell. 2000. “Tree-Based Algorithms for Missing Data Imputation.” In COMPSTAT 2000: Proceedings in Computational Statistics, edited by J. G. Bethlehem and P. G. M. Van der Heijden, 193–98. Heidelberg, Germany: Physica-Verlag.

Beaton, A. E. 1964. “The Use of Special Matrix Operations in Statistical Calculus.” Research Bulletin RB-64-51. Princeton, NJ: Educational Testing Service.

Bebchuk, J. D., and R. A. Betensky. 2000. “Multiple Imputation for Simple Estimation of the Hazard Function Based on Interval Censored Data.” Statistics in Medicine 19 (3): 405–19.

Beddo, V. 2002. “Applications of Parallel Programming in Statistics.” PhD thesis, Los Angeles: University of California.

Belin, T. R., M. Y. Hu, A. S. Young, and O. Grusky. 1999. “Performance of a General Location Model with an Ignorable Missing-Data Assumption in a Multivariate Mental Health Services Study.” Statistics in Medicine 18 (22): 3123–35.

Bernaards, C. A., T. R. Belin, and J. L. Schafer. 2007. “Robustness of a Multivariate Normal Approximation for Imputation of Incomplete Binary Data.” Statistics in Medicine 26 (6): 1368–82.

Besag, J. 1974. “Spatial Interaction and the Statistical Analysis of Lattice Systems.” Journal of the Royal Statistical Society B 36 (2): 192–236.

Bethlehem, J. G. 2002. “Weighting Adjustments for Ignorable Nonresponse.” In Survey Nonresponse, edited by R. M. Groves, D. A. Dillman, J. L. Eltinge, and R. J. A. Little, 275–87. New York: John Wiley & Sons.

Bodner, T. E. 2008. “What Improves with Increased Missing Data Imputations?” Structural Equation Modeling 15 (4): 651–75.

Bondarenko, I., and T. E. Raghunathan. 2010. “Multiple Imputation for Causal Inference.” In Section on Survey Research Methods - Jsm 2010, 3934–44. Alexandria VA: American Statistical Association.

———. 2016. “Graphical and Numerical Diagnostic Tools to Assess Suitability of Multiple Imputations and Imputation Models.” Statistics in Medicine 35 (17): 3007–20.

Boshuizen, H. C., G. J. Izaks, S. Van Buuren, and G. J. Ligthart. 1998. “Blood Pressure and Mortality in Elderly People Aged 85 and Older: Community Based Study.” British Medical Journal 316 (7147): 1780–4. http://www.stefvanbuuren.nl/publications/Blood%20pressure%20-%20BMJ%201998.pdf.

Box, G. E. P., and G. C. Tiao. 1973. Bayesian Inference in Statistical Analysis. New York: John Wiley & Sons.

Brand, J. E., and Y. Xie. 2010. “Who Benefits Most from College? Evidence for Negative Selection in Heterogeneous Economic Returns to Higher Education.” American Sociological Review 75 (2): 273–302.

Brand, J. P. L. 1999. “Development, Implementation and Evaluation of Multiple Imputation Strategies for the Statistical Analysis of Incomplete Data Sets.” PhD thesis, Rotterdam: Erasmus University.

Brand, J. P. L., S. Van Buuren, C. G. M. Groothuis-Oudshoorn, and E. S. Gelsema. 2003. “A Toolkit in SAS for the Evaluation of Multiple Imputation Methods.” Statistica Neerlandica 57 (1): 36–45. http://www.stefvanbuuren.nl/publications/Toolkit%20-%20Stat%20Neerl%202003.pdf.

Brandsma, H. P., and J. W. M. Knuver. 1989. “Effects of School and Classroom Characteristics on Pupil Progress in Language and Arithmetic.” International Journal of Educational Research 13 (7): 777–88.

Breiman, L., J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression Trees. New York: Wadsworth Publishing.

Brick, J. M., and G. Kalton. 1996. “Handling Missing Data in Survey Research.” Statistical Methods in Medical Research 5 (3): 215–38.

Brooks, S. P., and A. Gelman. 1998. “General Methods for Monitoring Convergence of Iterative Simulations.” Journal of Computational and Graphical Statistics 7 (4): 434–55.

Brownstone, D., and R. G. Valletta. 1996. “Modeling Earnings Measurement Error: A Multiple Imputation Approach.” Review of Economics and Statistics 78 (4): 705–17.

Bryk, A. S., and S. W. Raudenbush. 1992. Hierarchical Linear Models. Newbury Park, CA: Sage.

Burgette, L. F., and J. P. Reiter. 2010. “Multiple Imputation for Missing Data via Sequential Regression Trees.” American Journal of Epidemiology 172 (9): 1070–6.

Burton, A., and D. G. Altman. 2004. “Missing Covariate Data Within Cancer Prognostic Studies: A Review of Current Reporting and Proposed Guidelines.” British Journal of Cancer 91 (1): 4–8.

Cameron, N. L., and E. W. Demerath. 2002. “Critical Periods in Human Growth and Their Relationship to Diseases of Aging.” American Journal of Physical Anthropology Suppl 35: 159–84.

Carpenter, J. R., and M. G. Kenward. 2013. Multiple Imputation and Its Applications. Chichester, UK: John Wiley & Sons.

Carpenter, J. R., H. Goldstein, and M. G. Kenward. 2011. “‘REALCOM-Impute‘ Software for Multilevel Multiple Imputation with Mixed Response Types.” Journal of Statistical Software 45 (5): 1–14.

Casella, G., and E. I. George. 1992. “Explaining the Gibbs Sampler.” The American Statistician 46 (3): 167–74.

Chen, H. Y. 2011. “Compatibility of Conditionally Specified Models.” Statistics and Probability Letters 80 (7-8): 670–77.

Chen, H. Y., H. Xie, and Y. Qian. 2011. “Multiple Imputation for Missing Values Through Conditional Semiparametric Odds Ratio Models.” Biometrics 67 (3): 799–809.

Chen, L., and J. Sun. 2010. “A Multiple Imputation Approach to the Analysis of Interval-Censored Failure Time Data with the Additive Hazards Model.” Computational Statistics & Data Analysis 54 (4): 1109–16.

Chen, Q., and S. Wang. 2013. “Variable Selection for Multiply-Imputed Data with Application to Dioxin Exposure Study.” Statistics in Medicine 32 (21): 3646–59.

Cheung, M. W. L. 2007. “Comparison of Methods of Handling Missing Time-Invariant Covariates in Latent Growth Models Under the Assumption of Missing Completely at Random.” Organizational Research Methods 10 (4): 609–34.

Chevalier, A., and A. Fielding. 2011. “An Introduction to Anchoring Vignettes.” Journal of the Royal Statistical Society A 174 (3): 569–74.

Chung, Y., S. Rabe-Hesketh, V. Dorie, A. Gelman, and J. Liu. 2013. “A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models.” Psychometrika 78 (4). Springer: 685–709. http://gllamm.org/.

Clogg, C. C., D. B. Rubin, N. Schenker, B. Schultz, and L. Weidman. 1991. “Multiple Imputation of Industry and Occupation Codes in Census Public-Use Samples Using Bayesian Logistic Regression.” Journal of the American Statistical Association 86 (413): 68–78.

Cochran, W. G. 1977. Sampling Techniques. 3rd ed. New York: John Wiley & Sons.

Cole, S. R., H. Chu, and S. Greenland. 2006. “Multiple Imputation for Measurement Error Correction.” International Journal of Epidemiology 35: 1074–81.

Cole, T. J., and P. J. Green. 1992. “Smoothing Reference Centile Curves: The LMS Method and Penalized Likelihood.” Statistics in Medicine 11 (10): 1305–19.

Collins, L. M., J. L. Schafer, and C. M. Kam. 2001. “A Comparison of Inclusive and Restrictive Strategies in Modern Missing Data Procedures.” Psychological Methods 6 (3): 330–51.

Conversano, C., and C. Cappelli. 2003. “Missing Data Incremental Imputation Through Tree Based Methods.” In COMPSTAT 2002: Proceedings in Computational Statistics, edited by W. Härdle and B. Rönz, 455–60. Heidelberg, Germany: Physica-Verlag.

Conversano, C., and R. Siciliano. 2009. “Incremental Tree-Based Missing Data Imputation with Lexicographic Ordering.” Journal of Classification 26 (3): 361–79.

Cowles, M. K., and B. P. Carlin. 1996. “Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review.” Journal of the American Statistical Association 91 (434): 883–904.

Creel, D. V., and K. Krotki. 2006. “Creating Imputation Classes Using Classification Tree Methodology.” In Proceeding of the Joint Statistical Meeting 2006, Asa Section on Survey Research Methods, 2884–7. Alexandria, VA: American Statistical Association.

Daniels, M. J., and J. W. Hogan. 2008. Missing Data in Longitudinal Studies. Strategies for Bayesian Modeling and Sensitivity Analysis. Boca Raton, FL: Chapman & Hall/CRC.

Dauphinot, V., H. Wolff, F. Naudin, R. Guéguen, C. Sermet, J.M. Gaspoz, and M.P. Kossovsky. 2008. “New Obesity Body Mass Index Threshold for Self-Reported Data.” Journal of Epidemiology and Community Health 63 (2): 128–32.

De Groot, J. A. H., K. J. M. Janssen, A. H. Zwinderman, P. M. M. Bossuyt, J. B. Reitsma, and K. G. M. Moons. 2011. “Adjusting for Partial Verification Bias in Diagnostic Accuracy Studies: A Comparison of Methods.” Annals of Epidemiology 21 (2): 139–48.

De Groot, J. A. H., K. J. M. Janssen, A. H. Zwinderman, K. G. M. Moons, and J. B. Reitsma. 2008. “Multiple Imputation to Correct for Partial Verification Bias: A Revision of the Literature.” Statistics in Medicine 27 (28): 5880–9.

De Jong, R. 2012. “Robust Multiple Imputation.” PhD thesis, Hamburg, Germany: University of Hamburg.

De Jong, R., S. Van Buuren, and M. Spiess. 2016. “Multiple Imputation of Predictor Variables Using Generalized Additive Models.” Communications in Statistics - Simulation and Computation 45 (3): 968–85.

De Kroon, M. L. A., C. M. Renders, E. C. Kuipers, J. P. Van Wouwe, S. Van Buuren, G. A. De Jonge, and R. A. Hirasing. 2008. “Identifying Metabolic Syndrome Without Blood Tests in Young Adults - the Terneuzen Birth Cohort.” European Journal of Public Health 18 (6): 656–60.

De Kroon, M. L. A., C. M. Renders, J. P. Van Wouwe, S. Van Buuren, and R. A. Hirasing. 2010. “The Terneuzen Birth Cohort: BMI Changes Between 2 and 6 Years Correlate Strongest with Adult Overweight.” PloS ONE 5 (2): e9155.

De Leeuw, E. D., J. J. Hox, and D. A. Dillman. 2008. International Handbook of Survey Methodology. New York: Lawrence Erlbaum Associates.

De Leeuw, J., and E. Meijer. 2008. Handbook of Multilevel Analysis. New York: Springer.

De Roos, C., R. Greenwald, M. Den Hollander-Gijsman, E. Noorthoorn, S. Van Buuren, and A. De Jong. 2011. “A Randomized Comparison of Cognitive Behavioral Therapy (CBT) and Eye Movement Desensitization and Reprocessing (EMDR) in Disaster-Exposed Children.” European Journal of Psychotraumatology 2: 5694.

De Waal, T., J. Pannekoek, and S. Scholtus. 2011. Handbook of Statistical Data Editing and Imputation. Hoboken, NJ: John Wiley & Sons.

Delord, M., and E. Génin. 2016. “Multiple Imputation for Competing Risks Regression with Interval-Censored Data.” Journal of Statistical Computation and Simulation 86 (11): 2217–28.

DeMets, D. L., T. D. Cook, and E. Roecker. 2007. “Selected Issues in the Analysis.” In Introduction to Statistical Methods for Clinical Trials, edited by T.D. Cook and D.L. DeMets, 339–76. Boca Raton, FL: Chapman & Hall /CRC.

Demirtas, H. 2009. “Rounding Strategies for Multiply Imputed Binary Data.” Biometrical Journal 51 (4): 677–88.

———. 2010. “A Distance-Based Rounding Strategy for Post-Imputation Ordinal Data.” Journal of Applied Statistics 37 (3): 489–500.

Demirtas, H., and D. Hedeker. 2008a. “Imputing Continuous Data Under Some Non-Gaussian Distributions.” Statistica Neerlandica 62 (2): 193–205.

———. 2008b. “Multiple Imputation Under Power Polynomials.” Communications in Statistics - Simulation and Computation 37 (8): 1682–95.

Demirtas, H., S. A. Freels, and R. M. Yucel. 2008. “Plausibility of Multivariate Normality Assumption When Multiply Imputing Non-Gaussian Continuous Outcomes: A Simulation Assessment.” Journal of Statistical Computation and Simulation 78 (1): 69–84.

Dempster, A. P., and D. B. Rubin. 1983. “Introduction.” In Incomplete Data in Sample Surveys, 2:3–10. New York: Academic Press.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm (with Discussion).” Journal of the Royal Statistical Society B 39 (1): 1–38.

Dietz, W. H. 1994. “Critical Periods in Childhood for the Development of Obesity.” American Journal of Clinical Nutrition 59 (5): 955–59.

Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. Analysis of Longitudinal Data. 2nd ed. Oxford: Clarendon Press.

Dillman, D. A., J. D. Smyth, and L. Melani Christian. 2008. Internet, Mail, and Mixed-Mode Surveys: The Tailored Design Method. 3rd ed. New York: John Wiley & Sons.

Díaz-Ordaz, K., M. G. Kenward, A. Cohen, C. L. Coleman, and S. Eldridge. 2014. “Are Missing Data Adequately Handled in Cluster Randomised Trials? A Systematic Review and Guidelines.” Clinical Trials 11 (5): 590–600.

Doove, L. L., S. Van Buuren, and E. Dusseldorp. 2014. “Recursive Partitioning for Missing Data Imputation in the Presence of Interaction Effects.” Computational Statistics & Data Analysis 72: 92–104.

Dorans, N. J. 2007. “Linking Scores from Multiple Health Outcome Instruments.” Quality of Life Research 16 (Suppl 1): 85–94.

Dorey, F. J., R. J. A. Little, and N. Schenker. 1993. “Multiple Imputation for Threshold-Crossing Data with Interval Censoring.” Statistics in Medicine 12 (17): 1589–1603.

Drechsler, J. 2015. “Multiple Imputation of Multilevel Missing Data: Rigor Versus Simplicity.” Journal of Educational and Behavioral Statistics 40 (1): 69–95.

Drechsler, J., and J. P. Reiter. 2010. “Sampling with Synthesis: A New Approach for Releasing Public Use Census Microdata.” Journal of the American Statistical Association 105 (492): 1347–57.

D’Orazio, M., M. Di Zio, and M. Scanu. 2006. Statistical Matching: Theory and Practice. Chichester, UK: John Wiley & Sons.

Eekhout, I., H. C. W. De Vet, M. R. De Boer, J. W. R. Twisk, and M. W. Heymans. 2018. “Passive Imputation and Parcel Summaries Are Both Valid to Handle Missing Items in Studies with Many Multi-Item Scales.” Statistical Methods in Medical Research 27 (4): 1128–40.

Eekhout, I., M. A. Wiel, and M. W. Heymans. 2017. “Methods for Significance Testing of Categorical Covariates in Logistic Regression Models After Multiple Imputation: Power and Applicability Analysis.” BMC Medical Research Methodology 17 (1): 129.

Efron, B., and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. London: Chapman & Hall.

El Adlouni, S., A.-C. Favre, and B. Bobée. 2006. “Comparison of Methodologies to Assess the Convergence of Markov Chain Monte Carlo Methods.” Computational Statistics & Data Analysis 50 (10): 2685–2701.

Enders, C. K. 2010. Applied Missing Data Analysis. New York: Guilford Press.

Enders, C. K., and M. Mansolf. 2018. “Assessing the Fit of Structural Equation Models with Multiply Imputed Data.” Psychological Methods 23 (1): 76–93.

Enders, C. K., and D. Tofighi. 2007. “Centering Predictor Variables in Cross-Sectional Multilevel Models: A New Look at an Old Issue.” Psychological Methods 12 (2): 121.

Enders, C. K., B. T. Keller, and R. Levy. 2018. “A Fully Conditional Specification Approach to Multilevel Imputation of Categorical and Continuous Variables.” Psychological Methods dx.doi.org/10.1037/met0000148.

Enders, C. K., S. A. Mistler, and B. T. Keller. 2016. “Multilevel Multiple Imputation: A Review and Evaluation of Joint Modeling and Chained Equations Imputation.” Psychological Methods 21 (2). Department of Psychology, Arizona State University, United States; University of California, Los Angeles, United States; SAS, Cary, NC, United States: 222–40.

Erler, N. S., D. Rizopoulos, V. W. V. Jaddoe, O. H. Franco, and E. M. Lesaffre. 2018. “Bayesian Imputation of Time-Varying Covariates in Linear Mixed Models.” Statistical Methods in Medical Research to appear.

Erler, N. S., D. Rizopoulos, J. Van Rosmalen, V. W. V. Jaddoe, O. H. Franco, and E. M. Lesaffre. 2016. “Dealing with Missing Covariates in Epidemiologic Studies: A Comparison Between Multiple Imputation and a Full Bayesian Approach.” Statistics in Medicine 35 (17): 2955–74.

Fay, R. E. 1992. “When Are Inferences from Multiple Imputation Valid?” In ASA 1992 Proceedings of the Survey Research Methods Section, 227–32. Alexandria, VA.

———. 1996. “Alternative Paradigms for the Analysis of Imputed Survey Data.” Journal of the American Statistical Association 91 (434): 490–98.

Firth, D. 1993. “Bias Reduction of Maximum Likelihood Estimates.” Biometrika 80 (1): 27–38.

Fisher, R. A. 1925. Statistical Methods for Research Workers. Edinburgh, London: Oliver & Boyd.

Fitzmaurice, G. M., M. Davidian, G. Verbeke, and G. Molenberghs. 2009. Longitudinal Data Analysis. Boca Raton, FL: Chapman & Hall/CRC.

Fitzmaurice, G. M., N. M. Laird, and J. H. Ware. 2011. Applied Longitudinal Analysis, Second Edition. New York: John Wiley & Sons.

Ford, B. L. 1983. “An Overview of Hot-Deck Procedures.” In Incomplete Data in Sample Surveys, edited by W.G. Madow, I. Olkin, and D. B. Rubin, 2:185–207. Academic Press.

Fredriks, A. M., S. Van Buuren, R. J. F. Burgmeijer, J. F. Meulmeester, R. J. Beuker, E. Brugman, M. J. Roede, S. P. Verloove-Vanhorick, and J. M. Wit. 2000. “Continuing Positive Secular Growth Change in The Netherlands 1955–1997.” Pediatric Research 47 (3): 316–23.

Fredriks, A. M., S. Van Buuren, J. M. Wit, and S. P. Verloove-Vanhorick. 2000. “Body Index Measurements in 1996–7 Compared with 1980.” Archives of Disease in Childhood 82 (2): 107–12.

Gaffert, P., F. Koller-Meinfelder, and V. Bosch. 2016. Towards an Mi-Proper Predictive Mean Matching. Vol. Working Paper. Bamberg, Germany: University of Bamberg.

Galimard, J. E., S. Chevret, C. Protopopescu, and M. Resche-Rigon. 2016. “A Multiple Imputation Approach for MNAR Mechanisms Compatible with Heckman’s Model.” Statistics in Medicine 35 (17): 2907–20.

Gelfand, A. E., and A. F. M. Smith. 1990. “Sampling-Based Approaches to Calculating Marginal Densities.” Journal of the American Statistical Association 85 (410): 398–409.

Gelman, A. 2004. “Parameterization and Bayesian Modeling.” Journal of the American Statistical Association 99 (466): 537–45.

Gelman, A., and J. Hill. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press.

Gelman, A., and X. L. Meng, eds. 2004. Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives. Chichester, UK: John Wiley & Sons.

Gelman, A., and T. P. Speed. 1993. “Characterizing a Joint Probability Distribution by Conditionals.” Journal of the Royal Statistical Society B 55 (1): 185–88.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian Data Analysis. 2nd ed. London: Chapman & Hall/CRC.

Gelman, A., A. Jakulin, M. Grazia Pittau, and Y. S. Su. 2008. “A Weakly Informative Default Prior Distribution for Logistic and Other Regression Models.” Annals of Applied Statistics 2 (4): 1360–83.

Gelman, A., G. King, and C. Liu. 1998. “Not Asked and Not Answered: Multiple Imputation for Multiple Surveys.” Journal of the American Statistical Association 93 (443): 846–57.

Geskus, R. B. 2001. “Methods for Estimating the AIDS Incubation Time Distribution When Date of Seroconversion Is Censored.” Statistics in Medicine 20 (5): 795–812.

Ghosh-Dastidar, B., and J. L. Schafer. 2003. “Multiple Edit/Multiple Imputation for Multivariate Continuous Data.” Journal of the American Statistical Association 98 (464): 807–17.

Gibson, N. M., and S. Olejnik. 2003. “Treatment of Missing Data at the Second Level of Hierarchical Linear Models.” Educational and Psychological Measurement 63 (2): 204–38.

Gilks, W. R. 1996. “Full Conditional Distributions.” In Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 75–88. London: Chapman & Hall.

Gill, R. D., M. L. Van der Laan, and J. M. Robins. 1997. “Coarsening at Random: Characterizations, Conjectures and Counter-Examples.” In Proceedings of the First Seattle Conference on Biostatistics, edited by D. Y. Lin and T. R. Fleming, 255–94. Berlin: Springer-Verlag.

Gleason, T. C., and R. Staelin. 1975. “A Proposal for Handling Missing Data.” Psychometrika 40 (2): 229–52.

Glickman, M. E., Y. He, R. M. Yucel, and A. M. Zaslavsky. 2008. “Misreporting, Missing Data, and Multiple Imputation: Improving Accuracy of Cancer Registry Databases.” Chance 21 (3): 55–58.

Glynn, R. J., and B. Rosner. 2004. “Multiple Imputation to Estimate the Association Between Eyes in Disease Progression with Interval-Censored Data.” Statistics in Medicine 23 (21): 3307–18.

Glynn, R. J., N. M. Laird, and D. B. Rubin. 1986. “Selection Modeling Versus Mixture Modeling with Nonignorable Nonresponse.” In Drawing Inferences from Self-Selected Samples, edited by H. Wainer, 115–42. Springer-Verlag.

Goldstein, H. 2011a. “Bootstrapping in Multilevel Models.” In The Handbook of Advanced Multilevel Analysis, edited by J.J. Hox and J.K. Roberts, 163–71. Milton Park, UK: Routledge.

———. 2011b. Multilevel Statistical Models. 4th ed. Chichester, UK: John Wiley & Sons.

Goldstein, H., and J. R. Carpenter. 2015. “Multilevel Multiple Imputation.” In Handbook of Missing Data Methodology, edited by G. Molenberghs, G. M. Fitzmaurice, M. G. Kenward, A. A. Tsiatis, and G. Verbeke, 295–316. Boca Raton, FL: Chapman & Hall/CRC Press.

Goldstein, H., J. R. Carpenter, and W. J. Browne. 2014. “Fitting Multilevel Multivariate Models with Missing Data in Responses and Covariates That May Include Interactions and Non‐linear Terms.” Journal of the Royal Statistical Society: Series A 177 (2): 553–64.

Goldstein, H., J. R. Carpenter, M. G. Kenward, and K. A. Levin. 2009. “Multilevel Models with Multivariate Mixed Response Types.” Statistical Modelling 9 (3): 173–79.

Gomes, M., N. Gutacker, C. Bojke, and A. Street. 2016. “Addressing Missing Data in Patient-Reported Outcome Measures (PROMS): Implications for the Use of PROMS for Comparing Provider Performance.” Health Economics 25 (5): 515–28.

Gonzalez, J. M., and J. L. Eltinge. 2007. “Multiple Matrix Sampling: A Review.” In ASA 2007 Proceedings of the Section on Survey Research Methods, 3069–75. Alexandria, VA.

Goodman, L. A. 1970. “The Multivariate Analysis of Qualitative Data: Interactions Among Multiple Classifications.” Journal of the American Statistical Association 65 (329): 226–56.

Gorber, S. C., M. Tremblay, D. Moher, and B. Gorber. 2007. “A Comparison of Direct Vs. Self-Report Measures for Assessing Height, Weight and Body Mass Index: A Systematic Review.” Obesity Reviews 8 (4): 307–26.

Gordon, M. 2014. “Parallel Computation of Multiple Imputation by Using ‘Mice‘ R Package.” Https://Stackoverflow.com/Questions/24040280/Parallel-Computation-of-Multiple-Imputation-by-Using-Mice-R-Package.

Graham, J. W. 2012. Missing Data: Analysis and Design. New York: Springer.

Graham, J. W., A. E. Olchowski, and T. D. Gilreath. 2007. “How Many Imputations Are Really Needed? Some Practical Clarifications of Multiple Imputation Theory.” Preventive Science 8 (3): 206–13.

Graham, J. W., B. J. Taylor, A. E. Olchowski, and P. E. Cumsille. 2006. “Planned Missing Data Designs in Psychological Research.” Psychological Methods 11 (4): 323–43.

Greenland, S., and W. D. Finkle. 1995. “A Critical Look at Methods for Handling Missing Covariates in Epidemiologic Regression Analyses.” American Journal of Epidemiology 142 (12): 1255–64.

Greenwald, R., and A. Rubin. 1999. “Brief Assessment of Children’s Post-Traumatic Symptoms: Development and Preliminary Validation of Parent and Child Scales.” Research on Social Work Practice 9 (1): 61–75.

Groenwold, R. H. H., I. R. White, A. R. T. Donders, J. R. Carpenter, D. G. Altman, and K. G. M. Moons. 2012. “Missing Covariate Data in Clinical Research: When and When Not to Use the Missing-Indicator Method for Analysis.” Canadian Medical Association Journal 184 (11): 1265–9.

Groothuis-Oudshoorn, C. G. M., S. Van Buuren, and J. L. A. Van Rijckevorsel. 1999. “Flexible Multiple Imputation by Chained Equations of the AVO-95 Survey.” PG/VGZ/00.045. Leiden: TNO Prevention; Health.

Groves, R. M., F. J. Fowler Jr., M. P. Couper, J. M. Lepkowski, E. Singer, and R. Tourangeau. 2009. Survey Methodology. 2nd ed. New York: John Wiley & Sons.

Grund, S., O. Lüdtke, and A. Robitzsch. 2016a. “Multiple Imputation of Missing Covariate Values in Multilevel Models with Random Slopes: A Cautionary Note.” Behavior Research Methods 48 (2). Centre for International Student Assessment, Leibniz Institute for Science; Mathematics Education, Kiel, Germany; Innovation; Development of the Austrian School System, Federal Institute for Education Research, Salzburg, Austria: 640–49.

———. 2016b. “Pooling ANOVA Results from Multiply Imputed Datasets.” Methodology 12 (3): 75–88.

———. 2018a. “Multiple Imputation of Missing Data at Level 2: A Comparison of Fully Conditional and Joint Modeling in Multilevel Designs.” Journal of Educational and Behavioral Statistics doi.org/10.3102/1076998617738087.

———. 2018b. “Multiple Imputation of Missing Data for Multilevel Models: Simulations and Recommendations.” Organizational Research Methods 21 (1). Leibniz Institute for Science; Mathematics Education, Kiel, Germany; Centre for International Student Assessment, Germany: 111–49.

Grund, S., A. Robitzsch, and O. Lüdtke. 2018. ‘Mitml‘: Tools for Multiple Imputation in Multilevel Modeling.

Gutman, R., and D. B. Rubin. 2015. “Estimation of Causal Effects of Binary Treatments in Unconfounded Studies.” Statistics in Medicine 34 (26): 3381–98.

Hand, D. J., F. Daly, A. D. Lunn, K. J. McConway, and E. Ostrowski. 1994. A Handbook of Small Data Sets. London: Chapman & Hall.

Hardt, J., M. Herke, T. Brian, and W. Laubach. 2013. “Multiple Imputation of Missing Data: A Simulation Study on a Binary Response.” Open Journal of Statistics 3 (5).

Hare, R. D., D. Clark, M. Grann, and D. Thornton. 2000. “Psychopathy and the Predictive Validity of the PCL-R: An International Perspective.” Behavioral Sciences & the Law 18 (5): 623–45.

Harel, O. 2009. “The Estimation of \(R^2\) and Adjusted \(R^2\) in Incomplete Data Sets Using Multiple Imputation.” Journal of Applied Statistics 36 (10): 1109–18.

Harel, O., and X. H. Zhou. 2006. “Multiple Imputation for Correcting Verification Bias.” Statistics in Medicine 25 (22): 3769–86.

Harkness, J. A., F. J. R. Van de Vijver, and P. Ph. Mohler, eds. 2002. Cross-Cultural Survey Methods. New York: John Wiley & Sons.

Harrell, F. E. 2001. Regression Modeling Strategies. New York: Springer-Verlag.

Harvey, A. C. 1981. The Econometric Analysis of Time Series. Oxford: Philip Allen.

He, Y., and T. E. Raghunathan. 2006. “Tukey’s \(gh\) Distribution for Multiple Imputation.” The American Statistician 60 (3): 251–56.

He, Y.N. 2006. “Missing Data Imputation for Tree-Based Models.” PhD thesis, Los Angeles, CA: University of California.

Heckerman, D., D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. 2001. “Dependency Networks for Inference, Collaborative Filtering, and Data Visualisation.” Journal of Machine Learning Research 1 (1): 49–75.

Heckman, J. J. 1976. “The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models.” Annals of Economic and Social Measurement 5 (4): 475–92.

Heinze, G., and M. Schemper. 2002. “A Solution to the Problem of Separation in Logistic Regression.” Statistics in Medicine 21 (16): 2409–19.

Heitjan, D. F. 1993. “Ignorability and Coarse Data: Some Biomedical Examples.” Biometrics 49 (4): 1099–1109.

Heitjan, D. F., and R. J. A. Little. 1991. “Multiple Imputation for the Fatal Accident Reporting System.” Journal of the Royal Statistical Society C 40 (1): 13–29.

Heitjan, D. F., and D. B. Rubin. 1990. “Inference from Coarse Data via Multiple Imputation with Application to Age Heaping.” Journal of the American Statistical Association 85 (410): 304–14.

———. 1991. “Ignorability and Coarse Data.” Annals of Statistics 19 (4): 2244–53.

Herrington, D. M., T. D. Howard, G. A. Hawkins, D. M. Reboussin, J. Xu, S. L. Zheng, K. B. Brosnihan, D. A. Meyers, and E. R. Bleecker. 2002. “Estrogen-Receptor Polymorphisms and Effects of Estrogen Replacement on High-Density Lipoprotein Cholesterol in Women with Coronary Disease.” New England Journal of Medicine 346 (13): 967–74.

Herzog, T. N., and D. B. Rubin. 1983. “Using Multiple Imputations to Handle Nonresponse in Sample Surveys.” In Incomplete Data in Sample Surveys, edited by W.G. Madow, I. Olkin, and D. B. Rubin, 2:209–45. Academic Press.

Herzog, T. N., F. J. Scheuren, and W. E. Winkler. 2007. Data Quality and Record Linking Techniques. New York: Springer.

Heymans, M. W., S. Van Buuren, D. L. Knol, W. Van Mechelen, and H. C. W. De Vet. 2007. “Variable Selection Under Multiple Imputation Using the Bootstrap in a Prognostic Study.” BMC Medical Research Methodology 7: 33.

Hill, P. W., and H. Goldstein. 1998. “Multilevel Modeling of Educational Data with Cross-Classification and Missing Identification for Units.” Journal of Educational and Behavioral Statistics 23 (2): 117–28.

Hille, E. T. M., L. Elbertse, J. Bennebroek Gravenhorst, R. Brand, and S. P. Verloove-Vanhorick. 2005. “Nonresponse Bias in a Follow-up Study of 19-Year-Old Adolescents Born as Preterm Infants.” Pediatrics 116 (5): 662–66.

Hille, E. T. M., N. Weisglas-Kuperus, J. B. Van Goudoever, G. W. Jacobusse, M. H. Ens-Dokkum, L. De Groot, J. M. Wit, et al. 2007. “Functional Outcomes and Participation in Young Adulthood for Very Preterm and Very Low Birth Weight Infants: The Dutch Project on Preterm and Small for Gestational Age Infants at 19 Years of Age.” Pediatrics 120 (3): 587–95.

Holland, P. W. 1986. “Statistics and Causal Inference.” Journal of the American Statistical Association 81 (396): 945–60.

———. 2007. “A Framework and History for Score Linking.” In Linking and Aligning Scores and Scales, edited by N. J. Dorans, M. Pommerich, and P. W. Holland, 5–30. New York: Springer.

Holland, P. W., and H. Wainer, eds. 1993. Differential Item Functioning. Hillsdale, NJ: Lawrence Erlbaum Associates.

Hopke, P. K., C. Liu, and D. B. Rubin. 2001. “Multiple Imputation for Multivariate Data with Missing and Below-Threshold Measurements: Time-Series Concentrations of Pollutants in the Arctic.” Biometrics 57 (1): 22–33.

Hopman-Rock, M., E. Dusseldorp, A. M. J. Chorus, G. W. Jacobusse, A. Rütten, and S. Van Buuren. 2012. “Response Conversion for Improving Comparability of International Physical Activity Data.” Journal of Physical Activity & Health.

Horton, N. J., and K. P. Kleinman. 2007. “Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models.” The American Statistician 61 (1): 79–90.

Horton, N. J., S. R. Lipsitz, and M. Parzen. 2003. “A Potential for Bias When Rounding in Multiple Imputation.” The American Statistician 57 (4): 229–32.

Hosmer, D. W., and S. Lemeshow. 2000. Applied Logistic Regression. 2nd ed. New York: John Wiley & Sons.

Hosmer, D. W., S. Lemeshow, and S. May. 2008. Applied Survival Analysis: Regression Modeling of Time to Event Data. 2nd ed. Hoboken, NJ: John Wiley & Sons.

Hox, J. J., M. Moerbeek, and R. Van de Schoot. 2018. Multilevel Analysis: Techniques and Applications. Third Edition. New York: Routledge.

Hron, K., M. Templ, and P. Filzmoser. 2010. “Imputation of Missing Values for Compositional Data Using Classical and Robust Methods.” Computational Statistics & Data Analysis 54 (12): 3095–3107.

Hsu, C. H. 2007. “Multiple Imputation for Interval Censored Data with Auxiliary Variables.” Statistics in Medicine 26 (4): 769–81.

Hsu, C. H., J. M. G. Taylor, and C. Hu. 2015. “Analysis of Accelerated Failure Time Data with Dependent Censoring Using Auxiliary Variables via Nonparametric Multiple Imputation.” Statistics in Medicine 34 (19): 2768–80.

Hsu, C. H., J. M. G. Taylor, S. Murray, and D. Commenges. 2006. “Survival Analysis Using Auxiliary Variables via Non-Parametric Multiple Imputation.” Statistics in Medicine 25 (20): 3503–17.

Hughes, R. A., I. R. White, S. R. Seaman, J. R. Carpenter, K. Tilling, and J. A. C. Sterne. 2014. “Joint Modelling Rationale for Chained Equations.” BMC Medical Research Methodology 14 (1): 28.

Hui, S. L., and J. O. Berger. 1983. “Empirical Bayes Estimation of Rates in Longitudinal Studies.” Journal of the American Statistical Association 78 (384): 753–60.

Imai, K., and M. Ratkovic. 2013. “Estimating Treatment Effect Heterogeneity in Randomized Program Evaluation.” Annals of Applied Statistics 7 (1): 443–70.

Imbens, G. W., and D. B. Rubin. 2015. Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge, U.K.: Cambridge University Press.

Ip, E. H., and Y. J. Wang. 2009. “Canonical Representation of Conditionally Specified Multivariate Discrete Distributions.” Journal of Multivariate Analysis 100 (6): 1282–90.

Ishwaran, H., U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. 2008. “Random Survival Forests.” Annals of Applied Statistics 2 (3): 841–60.

Izaks, G. J., H. C. Van Houwelingen, G. M. Schreuder, and G. J. Ligthart. 1997. “The Association Between Human Leucocyte Antigens (HLA) and Mortality in Community Residents Aged 85 and Older.” Journal of the American Geriatrics Society 45 (1): 56–60.

Jackson, D., I. R. White, S. R. Seaman, H. Evans, K. Baisley, and J. R. Carpenter. 2014. “Relaxing the Independent Censoring Assumption in the Cox Proportional Hazards Model Using Multiple Imputation.” Statistics in Medicine 33 (27): 4681–94.

James, I. R., and M. A. Tanner. 1995. “A Note on the Analysis of Censored Regression Data by Multiple Imputation.” Biometrics 51 (1): 358–62.

Javaras, K. N., and D. A. Van Dyk. 2003. “Multiple Imputation for Incomplete Data with Semicontinuous Variables.” Journal of the American Statistical Association 98 (463): 703–15.

Jeliĉić, H., E. Phelps, and R. M. Lerner. 2009. “Use of Missing Data Methods in Longitudinal Studies: The Persistence of Bad Practices in Developmental Psychology.” Developmental Psychology 45 (4): 1195–9.

Jennrich, R. I., and M. D. Schluchter. 1986. “Unbalanced Repeated-Measures Models with Structured Covariance Matrices.” Biometrics 42 (4): 805–20.

Jolani, S. 2012. “Dual Imputation Strategies for Analyzing Incomplete Data.” PhD thesis, Utrecht: University of Utrecht.

———. 2018. “Hierarchical Imputation of Systematically and Sporadically Missing Data: An Approximate Bayesian Approach Using Chained Equations.” Biometrical Journal 60 (2): 333–51.

Jolani, S., T. P. A. Debray, H. Koffijberg, S. Van Buuren, and K. G. M. Moons. 2015. “Imputation of Systematically Missing Predictors in an Individual Participant Data Meta-Analysis: A Generalized Approach Using MICE.” Statistics in Medicine 34 (11): 1841–63.

Jones, H. E., and D. J. Spiegelhalter. 2009. “Accounting for Regression-to-the-Mean in Tests for Recent Changes in Institutional Performance: Analysis and Power.” Statistics in Medicine 30 (12): 1645–67.

Kaciroti, N. A., and T. E. Raghunathan. 2014. “Bayesian Sensitivity Analysis of Incomplete Data: Bridging Pattern-Mixture and Selection Models.” Statistics in Medicine 33 (27): 4841–57.

Kang, J. D. Y., and J. L. Schafer. 2007. “Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data.” Statistical Science 22 (4): 523–39.

Karahalios, A., L. Baglietto, J. B. Carlin, D. R. English, and J. A. Simpson. 2012. “A Review of the Reporting and Handling of Missing Data in Cohort Studies with Repeated Assessment of Exposure Measures.” BMC Medical Research Methodology 12. Cancer Epidemiology Centre, Cancer Council Victoria, Carlton, VIC, Australia.: 96.

Kasim, R. M., and S. W. Raudenbush. 1998. “Application of Gibbs Sampling to Nested Variance Components Models with Heterogeneous Within-Group Variance.” Journal of Educational and Behavioral Statistics 23 (2): 93–116.

Katsikatsou, M., I. Moustaki, F. Yang-Wallentin, and K.G. Jöreskog. 2012. “Pairwise Likelihood Estimation for Factor Analysis Models with Ordinal Data.” Computational Statistics & Data Analysis 56 (12): 4243–58.

Keller, B. T., and C. K. Enders. 2017. Blimp Users Guide 1.0. Los Angeles, CA.

Kennickell, A. B. 1991. “Imputation of the 1989 Survey of Consumer Finances: Stochastic Relaxation and Multiple Imputation.” ASA 1991 Proceedings of the Section on Survey Research Methods, 1–10.

Kenward, M. G., and G. Molenberghs. 2009. “Last Observation Carried Forward: A Crystal Ball?” Journal of Biopharmaceutical Statistics 19 (5): 872–88.

———. 2015. “A Perspective and Historical Overview on Selection, Pattern-Mixture and Shared Parameter Models.” In Handbook of Missing Data Methodology, edited by G. Molenberghs, G. M. Fitzmaurice, M. G. Kenward, A. A. Tsiatis, and G. Verbeke, 53–89. Boca Raton, FL: Chapman & Hall/CRC Press.

Khare, M., R. J. A. Little, D. B. Rubin, and J. L. Schafer. 1993. “Multiple Imputation of NHANES III.” In ASA 1993 Proceedings of the Survey Research Methods Section, 1:297–302. Alexandria, VA.

Kim, J. K., and J. Shao. 2013. Statistical Methods for Handling Incomplete Data. Boca Raton, FL: Chapman & Hall/CRC Press.

Kim, J. K., J. M. Brick, W. A. Fuller, and G. Kalton. 2006. “On the Bias of the Multiple-Imputation Variance Estimator in Survey Sampling.” Journal of the Royal Statistical Society B 68 (3): 509–21.

Kim, S., C.A. Sugar, and T. R. Belin. 2015. “Evaluating Model-Based Imputation Methods for Missing Covariates in Regression Models with Interactions.” Statistics in Medicine 34 (11): 1876–88.

King, G., J. Honaker, A. Joseph, and K. Scheve. 2001. “Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation.” American Political Science Review 95 (1): 49–69.

King, G., C. J. L. Murray, J. A. Salomon, and A. Tandon. 2004. “Enhancing the Validity and Cross-Cultural Comparability of Measurement in Survey Research.” American Political Science Review 98 (1): 191–207.

Klebanoff, M. A., and S. R. Cole. 2008. “Use of Multiple Imputation in the Epidemiologic Literature.” American Journal of Epidemiology 168 (4): 355–57.

Kleinbaum, D. G., and M. B. Klein. 2005. Survival Analysis: A Self-Learning Text. 2nd ed. New York: Springer-Verlag.

Kleinke, K. 2017. “Multiple Imputation Under Violated Distributional Assumptions: A Systematic Evaluation of the Assumed Robustness of Predictive Mean Matching.” Journal of Educational and Behavioral Statistics 42 (4): 371–404.

Kleinke, K., and J. Reinecke. 2013. “Multiple Imputation of Incomplete Zero-Inflated Count Data.” Statistica Neerlandica 67 (3): 311–36.

———. 2015. “Multiple Imputation of Multilevel Count Data.” In Improving Survey Methods: Lessons from Recent Research, edited by Uwe Engel, Ben Jann, Peter Lynn, Annette Scherpenzeel, and Patrick Sturgis, 381–96. New York: Routledge.

Knol, M. J., K. J. M. Janssen, A. R. T. Donders, A. C. G. Egberts, E. R. Heerdink, D. E. Grobbee, K. G. M. Moons, and M. I. Geerlings. 2010. “Unpredictable Bias When Using the Missing Indicator Method or Complete Case Analysis for Missing Confounder Values: An Empirical Example.” Journal of Clinical Epidemiology 63: 728–36.

Kolen, M. J., and R. L. Brennan. 1995. Test Equating: Methods and Practices. New York: Springer.

Koller-Meinfelder, F. 2009. “Analysis of Incomplete Survey Data – Multiple Imputation via Bayesian Bootstrap Predictive Mean Matching.” PhD thesis, Bamberg, Germany: University of Bamberg.

Kreft, I. G., J. De Leeuw, and L. S. Aiken. 1995. “The Effect of Different Forms of Centering in Hierarchical Linear Models.” Multivariate Behavioral Research 30 (1): 1–21.

Kropko, J., B. Goodrich, A. Gelman, and J. Hill. 2014. “Multiple Imputation for Continuous and Categorical Data: Comparing Joint Multivariate Normal and Conditional Approaches.” Political Analysis 22 (4): 497–519.

Krul, A., H. A. M. Daanen, and H. Choi. 2010. “Self-Reported and Measured Weight, Height and Body Mass Index (BMI) in Italy, The Netherlands and North America.” European Journal of Public Health 21 (4): 414–19.

Kunkel, D., and E. E. Kaizar. 2017. “A Comparison of Existing Methods for Multiple Imputation in Individual Participant Data Meta-Analysis.” Statistics in Medicine 36 (22). Department of Statistics, Ohio State University, 1958 Neil Avenue, Cockins Hall, Room 404, Columbus, OH, United States: 3507–32.

Kuo, K-L., C-C. Song, and T. J. Jiang. 2017. “Exactly and Almost Compatible Joint Distributions for High-Dimensional Discrete Conditional Distributions.” Journal of Multivariate Analysis 157: 115–23.

Lagaay, A. M., J. C. Van der Meij, and W. Hijmans. 1992. “Validation of Medical History Taking as Part of a Population Based Survey in Subjects Aged 85 and over.” British Medical Journal 304 (6834): 1091–2.

Laird, N. M., and J. H. Ware. 1982. “Random-Effects Models for Longitudinal Data.” Biometrics 38 (4): 963–74.

Lam, K. F., O. Y. Tang, and D. Y. T. Fong. 2005. “Estimating the Proportion of Cured Patients in a Censored Sample.” Statistics in Medicine 24 (12): 1865–79.

Lam, P. K. 2013. “Estimating Individual Causal Effects.” PhD thesis, Cambridge MA: Harvard University.

Lange, K. L., R. J. A. Little, and J. M. G. Taylor. 1989. “Robust Statistical Modeling Using the \(t\) Distribution.” Journal of the American Statistical Association 84 (408): 881–96.

Lee, H., E. Rancourt, and C. E. Särndal. 1994. “Experiments with Variance Estimation from Survey Data with Imputed Values.” Journal of Official Statistics 10 (3): 231–43.

Lee, K. J., and J. B. Carlin. 2010. “Multiple Imputation for Missing Data: Fully Conditional Specification Versus Multivariate Normal Imputation.” American Journal of Epidemiology 171 (5): 624–32.

Lee, K. J., J. C. Galati, J. A. Simpson, and J. B. Carlin. 2012. “Comparison of Methods for Imputing Ordinal Data Using Multivariate Normal Imputation: A Case Study of Non‐linear Effects in a Large Cohort Study.” Statistics in Medicine 31 (30): 4164–74.

Lee, M., M. H. Rahbar, M. Brown, L. Gensler, M. Weisman, L. Diekman, and J. D. Reveille. 2018. “A Multiple Imputation Method Based on Weighted Quantile Regression Models for Longitudinal Censored Biomarker Data with Missing Values at Early Visits.” BMC Medical Research Methodology 18 (1): 8.

Lesaffre, E. M., and A. Albert. 1989. “Partial Separation in Logistic Discrimination.” Journal of the Royal Statistical Society B 51 (1): 109–16.

Li, F., M. Baccini, F. Mealli, E. R. Zell, C. E. Frangakis, and D. B. Rubin. 2014. “Multiple Imputation by Ordered Monotone Blocks with Application to the Anthrax Vaccine Research Program.” Journal of Computational and Graphical Statistics 23 (3): 877–92.

Li, F., Y. Yu, and D. B. Rubin. 2012. “Imputing Missing Data by Fully Conditional Models: Some Cautionary Examples and Guideline.” Duke University Department of Statistical Science Discussion Paper 11-24.

Li, K-H. 1988. “Imputation Using Markov Chains.” Journal of Statistical Computation and Simulation 30 (1): 57–79.

Li, K. H., X. L. Meng, T. E. Raghunathan, and D. B. Rubin. 1991. “Significance Levels from Repeated \(p\)-Values with Multiply-Imputed Data.” Statistica Sinica 1 (1): 65–92.

Li, K. H., T. E. Raghunathan, and D. B. Rubin. 1991. “Large-Sample Significance Levels from Multiply Imputed Data Using Moment-Based Statistics and an F Reference Distribution.” Journal of the American Statistical Association 86 (416): 1065–73.

Liaw, A., and M. Wiener. 2002. “Classification and Regression by RandomForest.” R News 2 (3): 18–22. http://CRAN.R-project.org/doc/Rnews/.

Licht, C. 2010. “New Methods for Generating Significance Levels from Multiply-Imputed Data.” PhD thesis, Bamberg, Germany: University of Bamberg.

Lipsitz, S. R., M. Parzen, and L. P. Zhao. 2002. “A Degrees-of-Freedom Approximation in Multiple Imputation.” Journal of Statistical Computation and Simulation 72 (4): 309–18.

Little, R. J. A. 1988. “Missing-Data Adjustments in Large Surveys (with Discussion).” Journal of Business Economics and Statistics 6 (3): 287–301.

———. 1992. “Regression with Missing X’s: A Review.” Journal of the American Statistical Association 87 (420): 1227–37.

———. 1993. “Pattern-Mixture Models for Multivariate Incomplete Data.” Journal of the American Statistical Association 88 (421): 125–34.

———. 1995. “Modeling the Drop-Out Mechanism in Repeated-Measures Studies.” Journal of the American Statistical Association 90 (431): 1112–21.

———. 2009. “Selection and Pattern-Mixture Models.” In Longitudinal Data Analysis, edited by G. M. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs, 409–31. Boca Raton, FL: CRC Press.

———. 2013. “In Praise of Simplicity Not Mathematistry! Ten Simple Powerful Ideas for the Statistical Scientist.” Journal of the American Statistical Association 108 (502): 359–69.

Little, R. J. A., and D. B. Rubin. 1987. Statistical Analysis with Missing Data. New York: John Wiley & Sons.

———. 2002. Statistical Analysis with Missing Data. 2nd ed. New York: John Wiley & Sons.

Little, R. J. A., D. B. Rubin, and S. Z. Zangeneh. 2017. “Conditions for Ignoring the Missing-Data Mechanism in Likelihood Inferences for Parameter Subsets.” Journal of the American Statistical Association 112 (517): 314–20.

Little, T. D., and M. Rhemtulla. 2013. “Planned Missing Data Designs for Developmental Researchers.” Child Development Perspectives 7 (4): 199–204.

Liu, C. 1993. “Barlett’s Decomposition of the Posterior Distribution of the Covariance for Normal Monotone Ignorable Missing Data.” Journal of Multivariate Analysis 46 (2): 198–206.

———. 1995. “Missing Data Imputation Using the Multivariate \(t\) Distribution.” Journal of Multivariate Analysis 53 (1): 139–58.

Liu, C., and D. B. Rubin. 1998. “Ellipsoidally Symmetric Extensions of the General Location Model for Mixed Categorical and Continuous Data.” Biometrika 85 (3): 673–88.

Liu, J., A. Gelman, J. Hill, Y. S. Su, and J. Kropko. 2013. “On the Stationary Distribution of Iterative Imputations.” Biometrika 101 (1): 155–73.

Liu, L. X., S. Murray, and A. Tsodikov. 2011. “Multiple Imputation Based on Restricted Mean Model for Censored Data.” Statistics in Medicine 30 (12): 1339–50.

Liu, Y., and C. K. Enders. 2017. “Evaluation of Multi-Parameter Test Statistics for Multiple Imputation.” Multivariate Behavioral Research 53 (3): 371–90.

Liu, Y., Y. Wang, Y. Feng, and M. M. Wall. 2016. “Variable Selection and Prediction with Incomplete High-Dimensional Data.” The Annals of Applied Statistics 10 (1): 418.

Liublinska, V., and D. B. Rubin. 2014. “Sensitivity Analysis for a Partially Missing Binary Outcome in a Two-Arm Randomized Clinical Trial.” Statistics in Medicine 33 (24): 4170–85.

Lloyd, L. J., S. C. Langley-Evans, and S. McMullen. 2010. “Childhood Obesity and Adult Cardiovascular Disease Risk: A Systematic Review.” International Journal of Obesity 34 (1): 18–28.

Long, Q., and B. A. Johnson. 2015. “Variable Selection in the Presence of Missing Data: Resampling and Imputation.” Biostatistics 16 (3): 596–610.

Loong, B., and D. B. Rubin. 2017. “Multiply-Imputed Synthetic Data: Advice to the Imputer.” Journal of Official Statistics 33 (4): 1005–19.

Lüdtke, O., H. W. Marsh, A. Robitzsch, U. Trautwein, T. Asparouhov, and B. O. Muthén. 2008. “The Multilevel Latent Covariate Model: A New, More Reliable Approach to Group-Level Effects in Contextual Studies.” Psychological Methods 13 (3): 203.

Lüdtke, O., A. Robitzsch, and S. Grund. 2017. “Multiple Imputation of Missing Data in Multilevel Designs: A Comparison of Different Strategies.” Psychological Methods 22 (1). Leibniz Institute for Science; Mathematics Education (IPN), Kiel, Germany; Centre for International Student Assessment, Frankfurt, Germany: 141–65.

Lyles, R. H., D. Fan, and R. Chuachoowong. 2001. “Correlation Coefficient Estimation Involving a Left Censored Laboratory Assay Variable.” Statistics in Medicine 20 (19): 2921–33.

Lynn, H. S. 2001. “Maximum Likelihood Inference for Left-Censored HIV RNA Data.” Statistics in Medicine 20 (1): 33–45.

MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge: Cambridge University Press.

Mackinnon, A. 2010. “The Use and Reporting of Multiple Imputation in Medical Research – A Review.” Journal of Internal Medicine 268 (6): 586–93.

Madow, W. G., I. Olkin, and D. B. Rubin, eds. 1983. Incomplete Data in Sample Surveys. Vol. 2. New York: Academic Press.

Mallinckroth, C. H. 2013. Preventing and Treating Missing Data in Longitudinal Clinical Trials: A Practical Guide. Cambridge, UK: Cambridge University Press.

Marino, M., O. M. Buxton, and Y. Li. 2017. “Covariate Selection for Multilevel Models with Missing Data.” Stat 6 (1): 31–46.

Marker, D. A., D. R. Judkins, and M. Winglee. 2002. “Large-Scale Imputation for Complex Surveys.” In Survey Nonresponse, edited by R. M. Groves, D. A. Dillman, J. L. Eltinge, and R. J. A. Little, 329–41. New York: John Wiley & Sons.

Marsh, H. W. 1998. “Pairwise Deletion for Missing Data in Structural Equation Models: Nonpositive Definite Matrices, Parameter Estimates, Goodness of Fit, and Adjusted Sample Sizes.” Structural Equation Modeling 5 (1): 22–36.

Marshall, A., D. G. Altman, and R. L. Holder. 2010. “Comparison of Imputation Methods for Handling Missing Covariate Data When Fitting a Cox Proportional Hazards Model: A Resampling Study.” BMC Medical Research Methodology 10: 112.

Marshall, A., D. G. Altman, P. Royston, and R. L. Holder. 2010. “Comparison of Techniques for Handling Missing Covariate Data Within Prognostic Modelling Studies: A Simulation Study.” BMC Medical Research Methodology 10: 7.

Marshall, A., L. J. Billingham, and S. Bryan. 2009. “Can We Afford to Ignore Missing Data in Cost-Effectiveness Analyses?” European Journal of Health Economics 10 (1): 1–3.

Matsumoto, D., and F. J. R. Van de Vijver, eds. 2010. Cross-Cultural Research Methods in Psychology. Cambridge: Cambridge University Press.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. New York: Chapman & Hall.

McCulloch, C. E., and S. R. Searle. 2001. Generalized, Linear, and Mixed Models. New York: John Wiley & Sons.

McKnight, P. E., K. M. McKnight, S. Sidani, and A. J. Figueredo. 2007. Missing Data: A Gentle Introduction. New York: Guilford Press.

Meng, X. L. 1994. “Multiple Imputation with Uncongenial Sources of Input (with Discusson).” Statistical Science 9 (4): 538–73.

Meng, X. L., and D. B. Rubin. 1992. “Performing Likelihood Ratio Tests with Multiply-Imputed Data Sets.” Biometrika 79 (1): 103–11.

Miettinen, O. S. 1985. Theoretical Epidemiology: Principles of Occurence Research in Medicine. New York: John Wiley & Sons.

Mislevy, R. J. 1991. “Randomization-Based Inferences About Latent Variables from Complex Samples.” Psychometrika 1991 (2): 177–96.

Mistler, S. A., and C. K. Enders. 2017. “A Comparison of Joint Model and Fully Conditional Specification Imputation for Multilevel Missing Data.” Journal of Educational and Behavioral Statistics 42 (4): 432–66.

Molenberghs, G., and M. G. Kenward. 2007. Missing Data in Clinical Studies. Chichester: John Wiley & Sons.

Molenberghs, G., and G. Verbeke. 2005. Models for Discrete Longitudinal Data. New York: Springer.

Molenberghs, G., G. M. Fitzmaurice, M. G. Kenward, A. A. Tsiatis, and G. Verbeke. 2015. Handbook of Missing Data Methodology. Baco Raton, FL: Chapman & Hall/CRC Press.

Moons, K. G. M., A. R. T. Donders, T. Stijnen, and F. E. Harrell. 2006. “Using the Outcome for Imputation of Missing Predictor Values Was Preferred.” Journal of Clinical Epidemiology 59 (10): 1092–1101.

Morgan, S. L., and D. J. Harding. 2006. “Matching Estimators of Causal Effects Prospects and Pitfalls in Theory and Practice.” Sociological Methods & Research 35 (1): 3–60.

Moriarity, C., and F. J. Scheuren. 2003. “Note on Rubin’s Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations.” Journal of Business Economics and Statistics 21 (1): 65–73.

Morris, T. P., I. R. White, and P. Royston. 2014. “Tuning Multiple Imputation by Predictive Mean Matching and Local Residual Draws.” BMC Medical Research Methodology 14: 75.

Musoro, J. Z., A. H. Zwinderman, M. A. Puhan, G. Ter Riet, and R. B. Geskus. 2014. “Validation of Prediction Models Based on Lasso Regression with Multiply Imputed Data.” BMC Medical Research Methodology 14 (1): 116.

Muthén, B. O., L. K. Muthén, and T. Asparouhov. 2016. Regression and Mediation Analysis Using Mplus. Los Angeles, CA: Muthén & Muthén.

Naaktgeboren, C. A., J. A. H. De Groot, A. W. S. Rutjes, P. M. M. Bossuyt, J. B. Reitsma, and K. G. M. Moons. 2016. “Anticipating Missing Reference Standard Data When Planning Diagnostic Accuracy Studies.” British Medical Journal 352: i402.

National Research Council. 2010. The Prevention and Treatment of Missing Data in Clinical Trials. Washington, D.C.: The National Academies Press.

Netten, A. P., F. W. Dekker, C. Rieffe, W. Soede, J. J. Briaire, and J. H. Frijns. 2017. “Missing Data in the Field of Otorhinolaryngology and Head & Neck Surgery: Need for Improvement.” Ear and Hearing 38 (1). 1Department of Otorhinolaryngology; Head & Neck Surgery, 2Department of Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; 3Department of Developmental Psychology, Leiden University, Leiden, The Netherlands; 4Dutch Foundation for the Deaf; Hard of Hearing Child, Amsterdam, The Netherlands;; 5Leiden Institute for Brain; Cognition, Leiden, The Netherlands.: 1–6.

Neyman, J. 1923. “On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.” Annals of Agricultural Sciences, 1–51.

———. 1935. “Statistical Problems in Agricultural Experimentation (with Discussion).” Journal of the Royal Statistical Society, Series B Suppl. (2): 107–80.

Nguyen, C. D., J. B. Carlin, and K. J. Lee. 2017. “Model Checking in Multiple Imputation: An Overview and Case Study.” Emerging Themes in Epidemiology 14 (1): 8.

Nielsen, S. F. 2003. “Proper and Improper Multiple Imputation.” International Statistical Review 71 (3): 593–627.

Olkin, I., and R. F. Tate. 1961. “Multivariate Correlation Models with Discrete and Continuous Variables.” Annals of Mathematical Statistics 32 (2): 448–65.

Olsen, M. K., and J. L. Schafer. 2001. “A Two-Part Random Effects Model for Semicontinuous Longitudinal Data.” Journal of the American Statistical Association 96 (454): 730–45.

Orchard, T., and M. A. Woodbury. 1972. “A Missing Information Principle: Theory and Applications.” In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 1:697–715.

O’Kelly, M., and B. Ratitch. 2014. Clinical Trials with Missing Data: A Guide for Practitioners. Chichester, UK: John Wiley & Sons.

Palmer, M. J., R. Mercieca-Bebber, M. King, M. Calvert, H. Richardson, and M. Brundage. 2018. “A Systematic Review and Development of a Classification Framework for Factors Associated with Missing Patient-Reported Outcome Data.” Clinical Trials 15 (1): 95–106.

Pan, W. 2000. “A Multiple Imputation Approach to Cox Regression with Interval-Censored Data.” Biometrics 56 (1): 199–203.

———. 2001. “A Multiple Imputation Approach to Regression Analysis for Doubly Censored Data with Application to AIDS Studies.” Biometrics 57 (4): 1245–50.

Parker, R. 2010. Missing Data Problems in Machine Learning. Saarbrücken, Germany: VDM Verlag Dr. Müller.

Peng, Y., R. J. A. Little, and T. E. Raghunathan. 2004. “An Extended General Location Model for Causal Inferences from Data Subject to Noncompliance and Missing Values.” Biometrics 60 (3): 598–607.

Permutt, T. 2016. “Sensitivity Analysis for Missing Data in Regulatory Submissions.” Statistics in Medicine 35 (17): 2876–9.

Peugh, J. L., and C. K. Enders. 2004. “Missing Data in Educational Research: A Review of Reporting Practices and Suggestions for Improvement.” Review of Educational Research 74 (4): 525–56.

Piesse, A., L. Alvarez-Rojas, D. R. Judkins, and W. R. Shadish. 2010. “Causal Inference Using Semi-Parametric Imputation.” In Section on Survey Research Methods - Jsm 2010, 1085–96. Alexandria, VA: American Statistical Association.

Pinheiro, J. C., and D. M. Bates. 2000. Mixed-Effects Models in S and S-Plus. New York: Spinger.

Plumpton, C. O., T. P. Morris, D. A. Hughes, and I. R. White. 2016. “Multiple Imputation of Multiple Multi-Item Scales When a Full Imputation Model Is Infeasible.” BMC Research Notes 9 (1): 45.

Potthoff, R. F., and S. N. Roy. 1964. “A Generalized Multivariate Analysis of Variance Model Usefully Especially for Growth Curve Problems.” Biometrika 51 (3): 313–26.

Powney, M., P. Williamson, J. Kirkham, and R. Kolamunnage-Dona. 2014. “A Review of the Handling of Missing Longitudinal Outcome Data in Clinical Trials.” Trials 15. Institute of Translational Medicine, University of Liverpool, Crown Street, L69 3GS Liverpool, UK. M.Powney@liv.ac.uk.: 237.

Quartagno, M., and J. R. Carpenter. 2016. “Multiple Imputation for Ipd Meta‐analysis: Allowing for Heterogeneity and Studies with Missing Covariates.” Statistics in Medicine 35 (17): 2938–54.

———. 2017. jomo: A Package for Multilevel Joint Modelling Multiple Imputation. https://CRAN.R-project.org/package=jomo.

Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2002. “Reliable Estimation of Generalized Linear Mixed Models Using Adaptive Quadrature.” The Stata Journal 2 (1): 1–21.

Raghunathan, T. E. 2015. Missing Data Analysis in Practice. Boca Raton, FL: Chapman & Hall/CRC.

Raghunathan, T. E., and J. E. Grizzle. 1995. “A Split Questionnaire Survey Design.” Journal of the American Statistical Association 90 (429): 54–63.

Raghunathan, T. E., J. M. Lepkowski, J. Van Hoewyk, and P. W. Solenberger. 2001. “A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models.” Survey Methodology 27 (1): 85–95.

Raghunathan, T. E., J. P. Reiter, and D. B. Rubin. 2003. “Multiple Imputation for Statistical Disclosure Limitation.” Journal of Official Statistics 19 (1): 1–16.

Rao, J. N. K. 1996. “On Variance Estimation with Imputed Survey Data.” Journal of the American Statistical Association 91 (434): 499–505.

Raudenbush, S. W., and A. S. Bryk. 2002. Hierarchical Linear Models: Applications and Data Analysis Methods. Second Edition. Vol. 1. Thousand Oaks, CA: Sage.

Rässler, S. 2002. Statistical Matching. a Frequentist Theory, Practical Applications, and Alternative Bayesian Approaches. New York: Springer.

Reiter, J. P. 2005a. “Releasing Multiply Imputed, Synthetic Public Use Microdata: An Illustration and Empirical Study.” Journal of the Royal Statistical Society A 168 (1): 185–205.

———. 2005b. “Using CART to Generate Partially Synthetic Public Use Microdata.” Journal of Official Statistics 21 (3): 7–30.

———. 2007. “Small-Sample Degrees of Freedom for Multi-Component Significance Tests with Multiple Imputation for Missing Data.” Biometrika 94 (2): 502–8.

———. 2009. “Using Multiple Imputation to Integrate and Disseminate Confidential Microdata.” International Statistical Review 77 (2): 179–95.

Reiter, J. P., Q. Wang, and B. Zhang. 2014. “Bayesian Estimation of Disclosure Risks for Multiply Imputed, Synthetic Data.” Journal of Privacy and Confidentiality 6 (1): 2.

Renn, S. D. 2005. Expository Dictionary of Bible Words: Word Studies for Key English Bilble Words Based on the Hebrew and Greek Texts. Peabody, MA: Hendrickson Publishers.

Resche-Rigon, M., and I. R. White. 2018. “Multiple Imputation by Chained Equations for Systematically and Sporadically Missing Multilevel Data.” Statistical Methods in Medical Research doi.org/10.1177/0962280216666564.

Rezvan, H. P., K. J. Lee, and J. A. Simpson. 2015. “The Rise of Multiple Imputation: A Review of the Reporting and Implementation of the Method in Medical Research.” BMC Medical Research Methodology 15: 30.

Rhemtulla, M., and G. R. Hancock. 2016. “Planned Missing Data Designs in Educational Psychology Research.” Educational Psychologist 51 (3-4): 305–16.

Rigby, R. A., and D. M. Stasinopoulos. 2005. “Generalized Additive Models for Location, Scale and Shape,(with Discussion).” Applied Statistics 54.3: 507–54.

———. 2006. “Using the Box–Cox \(t\) Distribution in GAMLSS to Model Skewness and Kurtosis.” Statistical Modelling 6 (3): 209–29.

Roberts, G. O. 1996. “Markov Chain Concepts Related to Sampling Algorithms.” In Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 45–57. London: Chapman & Hall.

Robins, J. M., and N. Wang. 2000. “Inference for Imputation Estimators.” Biometrika 87 (1): 113–24.

Robinson, D. 2017. “‘Broom 0.4.2‘: Convert Statistical Analysis Objects into Tidy Data Frames.” R Package. CRAN.

Robitzsch, A., and O. Lüdtke. 2018. ‘Mdmb‘: Model Based Treatment of Missing Data. https://CRAN.R-project.org/package=mdmb.

Robitzsch, A., S. Grund, and T. Henke. 2017. ‘Miceadds‘: Some Additional Multiple Imputation Functions, Especially for ‘Mice‘. https://CRAN.R-project.org/package=miceadds.

Rogosa, D. R., and J. B. Willett. 1985. “Understanding Correlates of Change by Modeling Individual Differences in Growth.” Psychometrika 50 (2): 203–28.

Rosseel, Y. 2012. “‘Lavaan‘: An ‘R‘ Package for Structural Equation Modeling.” Journal of Statistical Software 48 (2): 1–36. doi:10.18637/jss.v048.i02.

Rothwell, P. M. 2005. “Subgroup Analysis in Randomised Controlled Trials: Importance, Indications, and Interpretation.” The Lancet 365 (9454): 176–86.

Royston, P. 2004. “Multiple Imputation of Missing Values.” Stata Journal 4 (3): 227–41.

———. 2007. “Multiple Imputation of Missing Values: Further Update of Ice, with an Emphasis on Interval Censoring.” Stata Journal 7 (4): 445–64.

———. 2009. “Multiple Imputation of Missing Values: Further Update of Ice, with an Emphasis on Categorical Variables.” Stata Journal 9 (3): 466–77.

Rubin, D. B. 1974. “Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies.” Journal of Educational Psychology 66 (5): 688–701.

———. 1976. “Inference and Missing Data.” Biometrika 63 (3): 581–90.

———. 1986. “Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations.” Journal of Business Economics and Statistics 4 (1): 87–94.

———. 1987a. “A Noniterative Sample/Importance Resampling Alternative to the Data Augmentation Algorithm for Creating a Few Imputations When the Fractions of Missing Information Are Modest.” Journal of the American Statistical Association 82 (398): 543–46.

———. 1987b. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.

———. 1993. “Discussion: Statistical Disclosure Limitation.” Journal of Official Statistics 9 (2): 461–68.

———. 1994. “Comments on ‘Missing Data, Imputation, and the Bootstrap’ by Bradley Efron.” Journal of the American Statistical Association 89 (426): 485–88.

———. 1996. “Multiple Imputation After 18+ Years.” Journal of the American Statistical Association 91 (434): 473–89.

———. 2000. “Causal Inference Without Counterfactuals: Comment.” Journal of the American Statistical Association 95 (450): 435–38.

———. 2003. “Nested Multiple Imputation of NMES via Partially Incompatible MCMC.” Statistica Neerlandica 57 (1): 3–18.

———. 2004a. “Direct and Indirect Causal Effects via Potential Outcomes.” Scandinavian Journal of Statistics 31 (2): 161–70.

———. 2004b. “The Design of a General and Flexible System for Handling Nonresponse in Sample Surveys.” The American Statistician 58 (4): 298–302.

———. 2005. “Causal Inference Using Potential Outcomes: Design, Modeling, Decisions.” Journal of the American Statistical Association 100 (469): 322–31.

Rubin, D. B., and J. L. Schafer. 1990. “Efficiently Creating Multiple Imputations for Incomplete Multivariate Normal Data.” In ASA 1990 Proceedings of the Statistical Computing Section, 83–88. Alexandria, VA.

Rubin, D. B., and N. Schenker. 1986a. “Efficiently Simulating the Coverage Properties of Interval Estimates.” Journal of the Royal Statistical Society C 35 (2): 159–67.

———. 1986b. “Multiple Imputation for Interval Estimation from Simple Random Samples with Ignorable Nonresponse.” Journal of the American Statistical Association 81 (394): 366–74.

Ruppert, D., M. P. Wand, and R. J. Carroll. 2003. Semiparametric Regression. Cambridge: Cambridge University Press.

Saar-Tsechansky, M., and F. Provost. 2007. “Handling Missing Values When Applying Classification Models.” Journal of Machine Learning Research 8: 1625–57.

Sabbaghi, A., and D. B. Rubin. 2014. “Comments on the Neyman-Fisher Controversy and Its Consequences.” Statistical Science 29 (2): 267–84.

Salfran, D., and M. Spiess. 2017. ImputeRobust: Robust Multiple Imputation with Generalized Additive Models for Location Scale and Shape. https://CRAN.R-project.org/package=ImputeRobust.

Salomon, J. A., A. Tandon, and C. J. L. Murray. 2004. “Comparability of Self Rated Health: Cross Sectional Multi-Country Survey Using Anchoring Vignettes.” British Medical Journal 328 (7434): 258.

Sauerbrei, W., and M. Schumacher. 1992. “A Bootstrap Resampling Procedure for Model Building: Application to the Cox Regression Model.” Statistics in Medicine 11 (16): 2093–2109.

Särndal, C. E., and S. Lundström. 2005. Estimation in Surveys with Nonresponse. New York: John Wiley & Sons.

Särndal, C. E., B. Swensson, and J. Wretman. 1992. Model Assisted Survey Sampling. New York: Springer-Verlag.

Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. London: Chapman & Hall.

———. 2003. “Multiple Imputation in Multivariate Problems When the Imputation and Analysis Models Differ.” Statistica Neerlandica 57 (1): 19–35.

Schafer, J. L., and J. W. Graham. 2002. “Missing Data: Our View of the State of the Art.” Psychological Methods 7 (2): 147–77.

Schafer, J. L., and M. K. Olsen. 1998. “Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst’s Perspective.” Multivariate Behavioral Research 33 (4): 545–71.

Schafer, J. L., and N. Schenker. 2000. “Inference with Imputed Conditional Means.” Journal of the American Statistical Association 95 (449): 144–54.

Schafer, J. L., and R. M. Yucel. 2002. “Computational Strategies for Multivariate Linear Mixed-Effects Models with Missing Values.” Journal of Computational and Graphical Statistics 11 (2): 437–57.

Schafer, J. L., T. M. Ezzati-Rice, W. Johnson, M. Khare, R. J. A. Little, and D. B. Rubin. 1996. “The NHANES III Multiple Imputation Project.” In ASA 1996 Proceedings of the Survey Research Methods Section, 28–37. Alexandria, VA.

Scharfstein, D. O., A. Rotnitzky, and J. M. Robins. 1999. “Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models (with Discussion).” Journal of the American Statistical Association 94 (448): 1096–1120.

Schenker, N., and J. M. G. Taylor. 1996. “Partially Parametric Techniques for Multiple Imputation.” Computational Statistics & Data Analysis 22 (4): 425–46.

Schenker, N., T. E. Raghunathan, and I. Bondarenko. 2010. “Improving on Analyses of Self-Reported Data in a Large-Scale Health Survey by Using Information from an Examination-Based Survey.” Statistics in Medicine 29 (5): 533–45.

Scheuren, F. J. 2004. “Introduction to History Corner.” The American Statistician 58 (4): 290–91.

———. 2005. “Multiple Imputation: How It Began and Continues.” The American Statistician 59 (4): 315–19.

Schouten, R. M., and G. Vink. 2017. “Wrapper Function ‘parlMICE‘,” https://gerkovink.github.io/parlMICE/Vignette_parlMICE.html.

Schouten, R. M., P. L. Lugtig, and G. Vink. 2018. “Generating Missing Values for Simulation Purposes: A Multivariate Amputation Procedure” Working paper, University of Utrecht.

Schönbeck, Y., H. Talma, P. Van Dommelen, B. Bakker, S. E. Buitendijk, R. A. HiraSing, and S. Van Buuren. 2013. “The World’s Tallest Nation Has Stopped Growing Taller: The Height of Dutch Children from 1955 to 2009.” Pediatric Research 73 (3): 371–77.

Schulz, K. F., D. G. Altman, and D. Moher. 2010. “CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomised Trials.” British Medical Journal 340. Family Health International, Research Triangle Park, NC 27709, USA. kschulz@fhi.org: c332.

Scott Long, J. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage.

Scott, M. A., P. E. Shrout, and S. L. Weinberg. 2013. “Multilevel Model Notation - Establishing the Commonalities.” In The Sage Handbook of Multilevel Modeling, edited by M. A. Scott, J. A. Simonoff, and B. D. Marx, 21–38. Los Angeles, CA: SAGE.

Seaman, S. R., and R. A. Hughes. 2018. “Relative Efficiency of Joint-Model and Full-Conditional-Specification Multiple Imputation When Conditional Models Are Compatible: The General Location Model.” Statistical Methods in Medical Research doi.org/10.1177/0962280216665872.

Seaman, S. R., J. W. Bartlett, and I. R. White. 2012. “Multiple Imputation of Missing Covariates with Non-Linear Effects and Interactions: An Evaluation of Statistical Methods.” BMC Medical Research Methodology 12 (1): 46.

Shadish, W. R., T. D. Cook, and D. T. Campbell. 2001. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. 2nd ed. Florence, KY: Wadsworth Publishing.

Shah, A. D., J. W. Bartlett, J. R. Carpenter, O. Nicholas, and H. Hemingway. 2014. “Comparison of Random Forest and Parametric Imputation Models for Imputing Missing Data Using MICE: A CALIBER Study.” American Journal of Epidemiology 179 (6): 764–74.

Shapiro, F. 2001. EMDR: Eye Movement Desensitization of Reprocessing: Basic Principles, Protocols and Procedures. 2nd ed. New York: Guilford Press.

Shen, Z. 2000. “Nested Multiple Imputation.” PhD thesis, Cambridge, MA: Department of Statistics, Harvard University.

Shortreed, S. M., E. Laber, T. Scott Stroup, J. Pineau, and S. A. Murphy. 2014. “A Multiple Imputation Strategy for Sequential Multiple Assignment Randomized Trials.” Statistics in Medicine 33 (24): 4202–14.

Si, Y., and J. P. Reiter. 2013. “Nonparametric Bayesian Multiple Imputation for Incomplete Categorical Variables in Large-Scale Assessment Surveys.” Journal of Educational and Behavioral Statistics 38 (5): 499–521.

Siciliano, R., M. Aria, and A. D’Ambrosio. 2006. “Boosted Incremental Tree-Based Imputation of Missing Data.” In Data Analysis, Classification and the Forward Search, edited by S. Zani, A. Cerioli, M. Riani, and M. Vichi, 271–78. Springer, Berlin.

Siddique, J., and T. R. Belin. 2008. “Multiple Imputation Using an Iterative Hot-Deck with Distance-Based Donor Selection.” Statistics in Medicine 27 (1): 83–102.

Singer, J. D., and J. B. Willett. 2003. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. Oxford: Oxford University Press.

Smink, W. 2016. Towards Estimation of Individual Causal Effects: The Use of a Prior for the Correlation Between Potential Outcomes. Utrecht: Master thesis. University of Utrecht.

Snijders, T. A. B., and R. J. Bosker. 2012. Multilevel Analysis. an Introduction to Basic and Advanced Multilevel Modeling. Second Edition. London: Sage Publications Ltd.

Song, J., and T. R. Belin. 2004. “Imputation for Incomplete High-Dimensional Multivariate Normal Data Using a Common Factor Model.” Statistics in Medicine 23 (18): 2827–43.

Sovilj, D., E. Eirola, Y. Miche, K-M. Björk, R. Nian, A. Akusok, and A. Lendasse. 2016. “Extreme Learning Machine for Missing Data Using Multiple Imputations.” Neurocomputing 174: 220–31.

Speidel, M., J. Drechsler, and J. W. Sakshaug. 2017. “Biases in Multilevel Analyses Caused by Cluster-Specific Fixed-Effects Imputation.” Behavior Research Methods, 1–17.

Stallard, P. 2006. “Psychological Interventions for Post-Traumatic Reactions in Children and Young People: A Review of Randomised Controlled Trials.” Clinical Psycholological Review 26 (7): 895–911.

Stasinopoulos, D. M., and R. A. Rigby. 2007. “Generalized Additive Models for Location Scale and Shape (GAMLSS) in R.” Journal of Statistical Software 23 (7): 1–46. http://www.jstatsoft.org/v23/i07.

Stasinopoulos, D. M., R. A. Rigby, G. Z. Heller, V. Voudouris, and F. De Bastiani. 2017. Flexible Regression and Smoothing. Boca Raton, FL: CRC Press.

Steel, R. J., N. Wang, and A. E. Raftery. 2010. “Inference from Multiple Imputation for Missing Data Using Mixtures of Normals.” Statistical Methodology 7 (10): 351–65.

Steinberg, A. M., M. J. Brymer, K. B. Decker, and R. S. Pynoos. 2004. “The University of California at Los Angeles Post-Traumatic Stress Disorder Reaction Index.” Current Psychiatry Reports 6 (2): 96–100.

Stekhoven, D. J., and P. Bühlmann. 2011. “‘MissForest‘: Non-Parametric Missing Value Imputation for Mixed-Type Data.” Bioinformatics 28 (1): 112–18.

Sterne, J. A. C., I. R. White, J. B. Carlin, M. Spratt, P. Royston, M. G. Kenward, A. M. Wood, and J. R. Carpenter. 2009. “Multiple Imputation for Missing Data in Epidemiological and Clinical Research: Potential and Pitfalls.” British Medical Journal 338: b2393.

Steyerberg, E. W. 2009. Clinical Prediction Models. New York: Springer.

Su, Y. S., A. Gelman, J. Hill, and M. Yajimi. 2011. “Multiple Imputation with Diagnostics (Mi) in R: Opening Windows into the Black Box.” Journal of Statistical Software 45 (2).

Subramanian, S. 2009. “The Multiple Imputations Based Kaplan–Meier Estimator.” Statistics and Probability Letters 79 (18): 1906–14.

———. 2011. “Multiple Imputations and the Missing Censoring Indicator Model.” Journal of Multivariate Analysis 102 (1): 105–17.

Sullivan, T. R., I. R. White, A. B. Salter, P. Ryan, and K. J. Lee. 2018. “Should Multiple Imputation Be the Method of Choice for Handling Missing Data in Randomized Trials?” Statistical Methods in Medical Research doi.org/10.1177/0962280216683570.

Taljaard, M., A. Donner, and N. Klar. 2008. “Imputation Strategies for Missing Continuous Outcomes in Cluster Randomized Trials.” Biometrical Journal 50 (3): 329–45.

Tang, L., J. Unüntzer, J. Song, and T. R. Belin. 2005. “A Comparison of Imputation Methods in a Longitudinal Randomized Clinical Trial.” Statistics in Medicine 24 (14): 2111–28.

Tanner, M. A., and W. H. Wong. 1987. “The Calculation of Posterior Distributions by Data Augmentation (with Discussion).” Journal of the American Statistical Association 82 (398): 528–50.

Taylor, J. M. G., K. L. Cooper, J. T. Wei, A. V. Sarma, T. E. Raghunathan, and S. G. Heeringa. 2002. “Use of Multiple Imputation to Correct for Nonresponse Bias in a Survey of Urologic Symptoms Among African-American Men.” American Journal of Epidemiology 156 (8): 774–82.

Tempelman, D. C. G. 2007. “Imputation of Restricted Data.” PhD thesis, Groningen: University of Groningen.

Templ, M., K. Hron, and P. Filzmoser. 2011. “RobCompositions: An R‐package for Robust Statistical Analysis of Compositional Data.” In Compositional Data Analysis, 341–55. Wiley-Blackwell.

Templ, M., A. Kowarik, and P. Filzmoser. 2011. “Iterative Stepwise Regression Imputation Using Standard and Robust Methods.” Computational Statistics & Data Analysis 55 (10): 2793–2806.

Therneau, T. M., B. Atkinson, and B. D. Ripley. 2017. ‘Rpart‘: Recursive Partitioning and Regression Trees. https://CRAN.R-project.org/package=rpart.

Tian, G-L., M. T. Tan, K. W. Ng, and M-L. Tang. 2009. “A Unified Method for Checking Compatibility and Uniqueness for Finite Discrete Conditional Distributions.” Communications in Statistics - Theory and Methods 38 (1): 115–29.

Tibshirani, R. J. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society. Series B (Methodological), 267–88.

Tierney, L. 1996. “Introduction to General State-Space Markov Chain Theory.” In Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 59–74. London: Chapman & Hall.

Tutz, G., and S. Ramzan. 2015. “Improved Methods for the Imputation of Missing Data by Nearest Neighbor Methods.” Computational Statistics & Data Analysis 90: 84–99.

US Bureau of the Census. 1957. United States Census of Manufactures, 1954, Vol Ii, Industry Statistics, Part 1, General Summary and Major Groups 20 to 28. Washington, D.C.: US Bureau of the Census.

Vach, W. 1994. Logistic Regression with Missing Values in the Covariates. Berlin: Springer-Verlag.

Vach, W., and M. Blettner. 1991. “Biased Estimation of the Odds Ratio in Case-Control Studies Due to the Use of Ad Hoc Methods of Correcting for Missing Values for Confounding Variables.” American Journal of Epidemiology 134 (8): 895–907.

Van Belle, G. 2002. Statistical Rules of Thumb. New York: John Wiley & Sons.

Van Bemmel, T., J. Gussekloo, R. G. J. Westendorp, and G. J. Blauw. 2006. “In a Population-Based Prospective Study, No Association Between High Blood Pressure and Mortality After Age 85 Years.” Journal of Hypertension 24 (2): 287–92.

Van Buuren, S. 2007a. “Multiple Imputation of Discrete and Continuous Data by Fully Conditional Specification.” Statistical Methods in Medical Research 16 (3): 219–42. http://www.stefvanbuuren.nl/publications/MI%20by%20FCS%20-%20SMMR%202007.pdf.

———. 2007b. “Worm Plot to Diagnose Fit in Quantile Regression.” Statistical Modelling 7 (4): 363–76.

———. 2010. “Item Imputation Without Specifying Scale Structure.” Methodology 6 (1): 31–36.

———. 2011. “Multiple Imputation of Multilevel Data.” In The Handbook of Advanced Multilevel Analysis, edited by J.J. Hox and J.K. Roberts, 173–96. Milton Park, UK: Routledge.

———. 2012. Flexible Imputation of Missing Data. Boca Raton, FL: Chapman & Hall/CRC.

Van Buuren, S., and A. M. Fredriks. 2001. “Worm Plot: A Simple Diagnostic Device for Modelling Growth Reference Curves.” Statistics in Medicine 20 (8): 1259–77.

Van Buuren, S., and C. G. M. Groothuis-Oudshoorn. 1999. “Flexible Multivariate Imputation by MICE.” PG/VGZ/99.054. Leiden: TNO Prevention; Health.

———. 2000. “Multivariate Imputation by Chained Equations: MICE V1.0 User’s Manual.” PG/VGZ/00.038. Leiden: TNO Prevention; Health.

———. 2011. “‘Mice‘: Multivariate Imputation by Chained Equations in R.” Journal of Statistical Software 45 (3): 1–67.

Van Buuren, S., and J. C. L. Ooms. 2009. “Stage Line Diagram: An Age-Conditional Reference Diagram for Tracking Development.” Statistics in Medicine 28 (11): 1569–79.

Van Buuren, S., and A. Tennant, eds. 2004. Response Conversion for the Health Monitoring Program. Vol. 04 145. Leiden: TNO Quality of Life; TNO Quality of Life.

Van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. “Multiple Imputation of Missing Blood Pressure Covariates in Survival Analysis.” Statistics in Medicine 18 (6): 681–94.

Van Buuren, S., J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, and D. B. Rubin. 2006. “Fully Conditional Specification in Multivariate Imputation.” Journal of Statistical Computation and Simulation 76 (12): 1049–64.

Van Buuren, S., S. Eyres, A. Tennant, and M. Hopman-Rock. 2003. “Assessing Comparability of Dressing Disability in Different Countries by Response Conversion.” European Journal of Public Health 13 (3 SUPPL.): 15–19.

———. 2005. “Improving Comparability of Existing Data by Response Conversion.” Journal of Official Statistics 21 (1): 53–72.

Van der Palm, D. W., L. A. Van der Ark, and J. K. Vermunt. 2016a. “A Comparison of Incomplete-Data Methods for Categorical Data.” Statistical Methods in Medical Research 25 (2): 754–74.

———. 2016b. “Divisive Latent Class Modeling as a Density Estimation Method for Categorical Data.” Journal of Classification 33: 52–72.

Van Deth, J. W., ed. 1998. Comparative Politics. the Problem of Equivalence. London: Routledge.

Van Ginkel, J. R., and P. M. Kroonenberg. 2014. “Analysis of Variance of Multiply Imputed Data.” Multivariate Behavioral Research 49 (1): 78–91.

Van Ginkel, J. R., L. A. Van der Ark, and K. Sijtsma. 2007. “Multiple Imputation for Item Scores When Test Data Are Factorially Complex.” British Journal of Mathematical and Statistical Psychology 60 (2): 315–37.

Van Praag, B. M. S., T. K. Dijkstra, and J. Van Velzen. 1985. “Least-Squares Theory Based on General Distributional Assumptions with an Application to the Incomplete Observations Problem.” Psychometrika 50 (1): 25–36.

Van Wouwe, J. P., C. I. Lanting, P. Van Dommelen, P. E. Treffers, and S. Van Buuren. 2009. “Breastfeeding Duration Related to Practised Contraception in The Netherlands.” Acta Paediatrica 98 (1): 86–90.

Vandenbroucke, J. P., E. Von Elm, D. G. Altman, P. C. Gotzsche, C. D. Mulrow, S. J. Pocock, C. Poole, J. J. Schlesselman, and M. Egger. 2007. “Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration.” Annals of Internal Medicine 147 (8). Leiden University Medical Center, Leiden, The Netherlands.: W163–94.

Vateekul, P., and K. Sarinnapakorn. 2009. “Tree-Based Approach to Missing Data Imputation.” In 2009 Ieee International Conference on Data Mining Workshops, 70–75. IEEE Computer Society.

Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with S. 4th ed. New York: Springer-Verlag.

Verbeke, G., and G. Molenberghs. 2000. Linear Mixed Models for Longitudinal Data. New York: Springer.

Vergouwe, Y., P. Royston, K. G. M. Moons, and D. G. Altman. 2010. “Development and Validation of a Prediction Model with Missing Predictor Data: A Practical Approach.” Journal of Clinical Epidemiology 63 (2): 205–14.

Verloove-Vanhorick, S. P., R. A. Verwey, R. Brand, J. Bennebroek Gravenhorst, M. J. N. C. Keirse, and J. H. Ruys. 1986. “Neonatal Mortality Risk in Relation to Gestational Age and Birthweight: Results of a National Survey of Preterm and Very-Low-Birthweight Infants in The Netherlands.” Lancet 1 (8472): 55–57.

Vermunt, J. K., J. R. Van Ginkel, L. A. Van der Ark, and K. Sijtsma. 2008. “Multiple Imputation of Incomplete Categorical Data Using Latent Class Analysis.” Sociological Methodology 38 (1): 369–97.

Viallefont, V., A. E. Raftery, and S. Richardson. 2001. “Variable Selection and Bayesian Model Averaging in Case-Control Studies.” Statistics in Medicine 20 (21): 3215–30.

Vidotto, D. 2018. “Bayesian Latent Class Models for the Multiple Imputation of Cross-Sectional, Multilevel and Longitudinal Categorical Data.” PhD thesis, Tilburg, The Netherlands: Tilburg University.

Vidotto, D., J. K. Vermunt, and M. C. Kaptein. 2015. “Multiple Imputation of Missing Categorical Data Using Latent Class Models: State of Art.” Psychological Test and Assessment Modelling 57 (4): 542–76.

Vink, G. 2015. “Restrictive Imputation of Incomplete Survey Data.” PhD thesis, Utrecht University.

Vink, G., and S. Van Buuren. 2013. “Multiple Imputation of Squared Terms.” Sociological Methods & Research 42 (4): 598–607.

———. 2014. “Pooling Multiple Imputations When the Sample Happens to Be the Population.” arXiv:1409.8542.

Vink, G., L. E. Frank, J. Pannekoek, and S. Van Buuren. 2014. “Predictive Mean Matching Imputation of Semicontinuous Variables.” Statistica Neerlandica 68 (1): 61–90.

Vink, G., G. Lazendic, and S. Van Buuren. 2015. “Partioned Predictive Mean Matching as a Large Data Multilevel Imputation Technique.” Psychological Test and Assessment Modeling 57 (4): 577–94.

Visscher, T. L. S., A. L. Viet, H. T. Kroesbergen, and J. C. Seidell. 2006. “Underreporting of BMI in Adults and Its Effect on Obesity Prevalence Estimations in the Period 1998 to 2001.” Obesity 14 (11): 2054–63.

Von Hippel, P. T. 2007. “Regression with Missing \(Y\)’S: An Improved Strategy for Analyzing Multiply Imputed Data.” Sociological Methodology 37 (1): 83–117.

———. 2009. “How to Impute Interactions, Squares, and Other Transformed Variables.” Sociological Methodology 39 (1): 265–91.

———. 2013. “Should a Normal Imputation Model Be Modified to Impute Skewed Variables?” Sociological Methods & Research 42 (1): 105–38.

———. 2018. “How Many Imputations Do You Need? A Two-Stage Calculation Using a Quadratic Rule.” Sociological Methods & Research doi.org/10.1177/0049124117747303.

Vroomen, J. M., I. Eekhout, M. G. Dijkgraaf, H. Van Hout, S. E. De Rooij, M. W. Heymans, and J. E. Bosmans. 2016. “Multiple Imputation Strategies for Zero-Inflated Cost Data in Economic Evaluations: Which Method Works Best.” The European Journal of Health Economics 17 (8): 939–50.

Wagstaff, D. A., and O. Harel. 2011. “A Closer Examination of Three Small-Sample Approximations to the Multiple-Imputation Degrees of Freedom.” Stata Journal 11 (3): 403–19.

Waljee, A. K., A. Mukherjee, A. G. Singal, Y. Zhang, J. Warren, U. Balis, J. Marrero, J. Zhu, and P. D. R. Higgins. 2013. “Comparison of Imputation Methods for Missing Laboratory Data in Medicine.” BMJ Open 3 (8): e002847.

Wallace, M. L., S. J. Anderson, and S. Mazumdar. 2010. “A Stochastic Multiple Imputation Algorithm for Missing Covariate Data in Tree-Structured Survival Analysis.” Statistics in Medicine 29 (29): 3004–16.

Walls, T. A., and J. L. Schafer, eds. 2006. Models for Intensive Longitudinal Data. Oxford: Oxford University Press.

Wang, N., and J. M. Robins. 1998. “Large-Sample Theory for Parametric Multiple Imputation Procedures.” Biometrika 85 (4): 935–48.

Wang, Q., and G. E. Dinse. 2010. “Linear Regression Analysis of Survival Data with Missing Censoring Indicators.” Lifetime Data Analysis 17 (2): 256–79.

Wang, Y. J., and K-L. Kuo. 2010. “Compatibility of Discrete Conditional Distributions with Structural Zeros.” Journal of Multivariate Analysis 101 (1): 191–99.

Wei, G. C. G., and M. A. Tanner. 1991. “Applications of Multiple Imputation to the Analysis of Censored Regression Data.” Biometrics 47 (4): 1297–1309.

Weisberg, H. I. 2010. Bias and Causation: Models and Judgment for Valid Comparisons. Hoboken, NJ: John Wiley & Sons.

White, I. R., and J. B. Carlin. 2010. “Bias and Efficiency of Multiple Imputation Compared with Complete-Case Analysis for Missing Covariate Values.” Statistics in Medicine 29 (28): 2920–31.

White, I. R., and P. Royston. 2009. “Imputing Missing Covariate Values for the Cox Model.” Statistics in Medicine 28 (15): 1982–98.

White, I. R., and S. G. Thompson. 2005. “Adjusting for Partially Missing Baseline Measurements in Randomized Trials.” Statistics in Medicine 24 (7): 993–1007.

White, I. R., R. Daniel, and P. Royston. 2010. “Avoiding Bias Due to Perfect Prediction in Multiple Imputation of Incomplete Categorical Variables.” Computational Statistics & Data Analysis 54 (10): 2267–75. http://dx.doi.org/10.1016/j.csda.2010.04.005.

White, I. R., N. J. Horton, J. R. Carpenter, and S. J. Pocock. 2011. “Strategy for Intention to Treat Analysis in Randomised Trials with Missing Outcome Data.” British Medical Journal 342: d40.

White, I. R., P. Royston, and A. M. Wood. 2011. “Multiple Imputation Using Chained Equations: Issues and Guidance for Practice.” Statistics in Medicine 30 (4): 377–99.

Wickham, H., and G. Grolemund. 2017. R for Data Science. Sebastopol, CA: O’Reilly Media, Inc.

Willett, J. B. 1989. “Some Results on Reliability for the Longitudinal Measurement of Change: Implications for the Design of Studies of Individual Growth.” Educational and Psychological Measurement 49: 587–602.

Wood, A. M., I. R. White, and P. Royston. 2008. “How Should Variable Selection Be Performed with Multiply Imputed Data?” Statistics in Medicine 27 (17): 3227–46.

Wood, A. M., I. R. White, and S. G. Thompson. 2004. “Are Missing Outcome Data Adequately Handled? A Review of Published Randomized Controlled Trials in Major Medical Journals.” Clinical Trials 1 (4): 368–76.

Wu, L. 2010. Mixed Effects Models for Complex Data. Boca Raton, FL: Chapman & Hall /CRC.

Wu, W., F. Jia, and C. K. Enders. 2015. “A Comparison of Imputation Strategies for Ordinal Missing Data on Likert Scale Variables.” Multivariate Behavioral Research 50 (5): 484–503.

Yang, X., T. R. Belin, and W. J. Boscardin. 2005. “Imputation and Variable Selection in Linear Regression Models with Missing Covariates.” Biometrics 61 (2): 498–506.

Yao, Y., S-C. Chen, and S-H. Wang. 2014. “On Compatibility of Discrete Full Conditional Distributions: A Graphical Representation Approach.” Journal of Multivariate Analysis 124: 1–9.

Yates, F. 1933. “The Analysis of Replicated Experiments When the Field Results Are Incomplete.” Empirical Journal of Experimental Agriculture 1 (2): 129–42.

Yu, L-M., A. Burton, and O. Rivero-Arias. 2007. “Evaluation of Software for Multiple Imputation of Semi-Continuous Data.” Statistical Methods in Medical Research 16 (3): 243–58.

Yu, M., J. P. Reiter, L. Zhu, B. Liu, K. A. Cronin, and E. J. Feuer. 2017. “Protecting Confidentiality in Cancer Registry Data with Geographic Identifiers.” American Journal of Epidemiology 186 (1): 83–91.

Yucel, R. M. 2008. “Multiple Imputation Inference for Multivariate Multilevel Continuous Data with Ignorable Non-Response.” Philosophical Transactions of the Royal Society A 366 (1874): 2389–2403.

———. 2011. “Random Covariances and Mixed-Effects Models for Imputing Multivariate Multilevel Continuous Data.” Statistical Modelling 11 (4): 351–70.

———. 2017. “Impact of the Non-Distinctness and Non-Ignorability on the Inference by Multiple Imputation in Multivariate Multilevel Data: A Simulation Assessment.” Journal of Statistical Computation and Simulation 87 (9). Department of Epidemiology; Biostatistics, State University of New York, Albany, NY, United States: 1813–26.

Yucel, R. M., and A. M. Zaslavsky. 2005. “Imputation of Binary Treatment Variables with Measurement Error in Administrative Data.” Journal of the American Statistical Association 100 (472): 1123–32.

Yucel, R. M., Y. He, and A. M. Zaslavsky. 2008. “Using Calibration to Improve Rounding in Imputation.” The American Statistician 62 (2): 125–29.

Yusuf, S., D. Zucker, E. Passamani, P. Peduzzi, T. Takaro, L.D. Fisher, J. W. Kennedy, K. Davis, T. Killip, and R. Norris. 1994. “Effect of Coronary Artery Bypass Graft Surgery on Survival: Overview of 10-Year Results from Randomised Trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration.” The Lancet 344 (8922): 563–70.

Yuval, N.H. 2014. Sapiens. New York: Random House.

Zhang, Q., and L. Wang. 2017. “Moderation Analysis with Missing Data in the Predictors.” Psychological Methods 22 (4): 649–66.

Zhang, W., Y. Zhang, K. Chaloner, and J. T. Stapleton. 2009. “Imputation Methods for Doubly Censored HIV Data.” Journal of Statistical Computation and Simulation 79 (10): 1245–57.

Zhao, J. H., and J. L. Schafer. 2016. ‘Pan‘: Multiple Imputation for Multivariate Panel or Clustered Data.

Zhao, Y., and Q. Long. 2017. “Variable Selection in the Presence of Missing Data: Imputation-Based Methods.” Wiley Interdisciplinary Reviews: Computational Statistics 9 (5).

Zhou, X. H., C. Zhou, D. Lui, and X. Ding. 2014. Applied Missing Data Analysis in the Health Sciences. Chichester, UK: John Wiley & Sons.

Zhu, J. 2016. “Assessment and Improvement of a Sequential Regression Multivariate Imputation Algorithm.” PhD thesis, University of Michigan.

Zhu, J., and T. E. Raghunathan. 2015. “Convergence Properties of a Sequential Regression Multiple Imputation Algorithm.” Journal of the American Statistical Association 110 (511): 1112–24.