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This paper outlines a strategy to validate multiple imputation
methods. Rubin’s criteria for proper multiple imputation are the point
of departure. We describe a simulation method that yields insight into
various aspects of bias and efficiency of the imputation process. We
propose a new method for creating incomplete data under a general
Missing At Random (MAR) mechanism. Software implementing the
validation strategy is available as a SAS/IML module. The method is
applied to investigate the behavior of polytomous regression impu-
tation for categorical data.
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1 Introduction

The occurrence of missing data is a pervasive problem in data analysis. Multiple

imputation (MI) (cf., RUBIN, 1987, 1996) is a method to reflect the additional

variability in estimates due to missing values. With MI, for each missing data entry

m P 2 values are imputed resulting in m completed data sets. These m completed data
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sets are analyzed separately by the complete-data method of interest, and the m

intermediate results of these analyses are pooled into one final result according to

certain rules. Several methods exist for pooling the m completed data results (cf., LI

et al. 1991a,b, MENG and RUBIN, 1992).

The statistical properties of MI have been studied quite extensively. See for

example RUBIN (1987) and SCHAFER (1997). Nevertheless, there are situations in

which one would like to evaluate the properties of MI in more detail. For example,

one might be interested in the performance of MI under special missing data

mechanisms (MDM), for special types of data, and for special types of imputation

procedures. The ideas and tools described in this paper are meant to be useful for

such an evaluation.

Our starting point is Rubin’s concept of proper MI. Properness is a desirable

property, since the results of an MI method can only be guaranteed to be valid if the

imputations are generated by a proper method. On the other hand, it has been

generally recognized that MI may also work well under improper methods (cf.,

SCHAFER, 1997). The tools presented in this paper also aid in studying how much

improperness can be accepted before MI breaks down. Rubin’s conditions for

properness are formulated in a general Bayesian context with m ¼ 1. We develop a
slightly simplified formulation that allows for empirical verification. Properness

depends on the statistic of interest: a method can be proper for one type of outcome

measure and improper for another one. We therefore study properness on a range of

measures, called target statistics.

We first introduce terminology, outline the properness conditions according to

Rubin, and present our simplification of them. We then describe our general

evaluation strategy. One specific problem is how to generate missing data. We

introduce a new method to generate missing data under a class of MAR mechanisms

and apply the validation strategy to polytomous regression methods for imputing

categorical data.

2 Methods

2.1 Terminology

As in RUBIN (1987), let Q be the quantity of interest. Complete data statistics are

represented by ðQ̂Q;UÞ, where Q̂Q is a point estimate of a population parameter of
interest Q, and U is the estimated variance-covariance matrix of this estimate.

Suppose that multiple imputation creates m completed data sets. Let Q̂Q�i be a point

estimate of Q computed from the ith (i ¼ 1,. . .,m) imputed data set, and let �UU�i be an

estimate of the variance-covariance matrix of Q̂Q�i. The pooled result is represented by

the triple ð �QQm; �UUm; BmÞ. Here �QQm is the average of the m completed data estimates

Q̂Q�1; . . . ; Q̂Q�m, the within imputation variance �UUm is the average over the m completed

data variance-covariance matrices U*1,. . .,U*m, and the between imputation variance

Bm is the variance-covariance matrix of the m completed data estimates Q̂Q�1; . . . ; Q̂Q�m
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(cf., RUBIN, 1987, p. 76). The assumption that makes multiple imputation work is that
�QQm is normally distributed as �QQm � NðQ̂Q; BÞ, where B is the variance-covariance
matrix of �QQ1 for an infinite number of imputations. Rubin shows that B is an

asymptotically efficient estimator of (1 + m)1)Bm for finite m.

2.2 Proper imputation

Randomization-valid analysis under the frequentist perspective can be guaranteed

only if both the complete-data inference is randomization-valid, and if the multiple

imputation procedure is proper (cf., RUBIN, 1987, p. 119). Under a fixed MDM, a

multiple imputation procedure with m ¼ 1 is proper for the set of complete-data

statistics ðQ̂Q;UÞ if the following conditions are satisfied.
First, �QQ1 is an unbiased estimate of Q̂Q and normally distributed with a variance-

covariance matrix B under the underlying MDM:

�QQ1 � NðQ̂Q;BÞ: ð1Þ

Second, the between imputation variance B1 estimated by MI is approximately

equal to the variance-covariance matrix B of �QQ1 under the underlying MDM:

B1 � B: ð2Þ

Third, the complete data variance �UU1 estimated by MI is approximately equal to

the complete data variance U:

�UU1 � U : ð3Þ

In these equations, the symbol � indicates equality in the sense of lower order

variability (cf., RUBIN, 1987). Finally, the variance-covariance matrix B of �QQ1 is

stable under repeated sampling:

B � B0>U0ð Þ: ð4Þ

In equation (4) B0 is the expected value of the variance-covariance B under

repeated sampling and U0 is the true variance-covariance matrix of Q̂Q under

sampling. This condition means that the B is distributed around B0 and the variance-

covariance matrix of this distribution is of lower order variance than U0 in the sense

of RUBIN (1987). It is difficult to empirically verify Rubin’s conditions directly for a

given set of data. Not only is m finite in practice, it is also not clear which criterion

should be used to distinguish proper from improper cases in equations (2)–(4). In the

sequel, we use a slightly simplified set of conditions:

E �QQm½ 	 ¼ Q̂Q; ð5Þ

E �UUm½ 	 ¼ U ; ð6Þ

Var �QQmð Þ ¼ 1þ m�1� �
E Bm½ 	; ð7Þ
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P �QQm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m�1ð ÞBm

q� �
tm�1;0:975OQ̂Q

�

O�QQm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m�1ð ÞBm

q� �
tm�1;0:975

�
¼ 0:95: ð8Þ

In these equations E [.] and Var[.] are the expectation and variance taken under

repeatedly generation of incomplete data sets by the underlying MDM and

subsequent application of multiple imputation. Equations (5) and (6), which are

simplifications of the equations (1) and (3), require that �QQm and �UUm are unbiased

estimates of the complete data statistics Q̂Q and U, respectively. Equation (7), which

simplifies condition (2), requires that (1+m)1)Bm is an unbiased estimate of the

variance of �QQm. Finally, equation (8) states that the 95% confidence interval given by
�QQm � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ m�1ÞBm

p
Þtm�1;0:975, where tm)1;0.975 is the 0.975 quantile of the Student-

t distribution with m ) 1 degrees of freedom, has an actual coverage of at least 95%.
This interval is based on the assumption that �QQm is normally distributed with a mean

equal to Q̂Q and a variance equal to (1+m)1)Bm, where the estimate Bm of B has the

same distribution as ðv2m�1=ðm� 1ÞÞB, with v2m a v2 random variable with m ) 1
degrees of freedom. Note that this is an interval for the complete statistic Q̂Q and not

for the usual population parameter of interest Q. The observed variability in �QQm
reflects only the uncertainty due to the missing information. We note that the

obtained coverage in (8) should be interpreted with care. An actual coverage of 95%

does not automatically imply properness, since a bias of �QQm with respect to Q̂Q in

combination with an overestimation of the between imputation variance B may

result in an actual coverage of 95% or more. Thus, the actual coverage measure

needs to be supplemented by other information. In particular, we need to know

whether �QQm is approximately unbiased with respect to Q̂Q. Finally, equation (4) is a

minor technical condition that primarily depends on the sample size, which will not

be considered of major importance.

2.3 Validation strategy

Except for trivial cases, evaluation of properness of MI is analytically intractable,

and is therefore best done via simulation. We have written SAS/IML software that

assists in the actual calculations. Several aspects can be varied: the complete data set,

the MDM, the amount of missing information, the imputation method, and so on.

Properness can be established for one or more target statistics that measure aspects

of univariate or bivariate distributions of the variables. Table 1 provides an overview

of the target statistics that are currently implemented in the software.

The log odds-ratio is used if one or both variables are binary, otherwise Cramer’s

C is taken.

Figure 1 depicts the flow of the validation protocol. For a given complete data set,

complete data target statistics ðQ̂Q;UÞ are computed. The method generates N
incomplete data sets applying a user-specified MDM to the complete data. The
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number of replications, N, is typically chosen in the range of 200 to 1,000. Each

incomplete data set is completed and analyzed by MI, resulting in solutions

ð �QQð1Þ
m ; �UU

ð1Þ
m ; B

ð1Þ
m Þ; . . . ; ð �QQðNÞ

m ; �UU
ðNÞ
m ; B

ðNÞ
m Þ. Estimates for E½ �QQm	, E½ �UUm	 and E [Bm] are

obtained by taking averages over the replications. Var½ �QQm	 ¼ ð1 þ m�1ÞB is

estimated by Vâarð �QQmÞ as the observed variance between all �QQ
ðiÞ
m , i ¼ 1, . . ., N. The

coverage according to equation (8) is calculated as the percentage of confidence

intervals including Q̂Q.

If the imputation method is proper, we expect ÊE½ �QQm	 � Q̂Q; ÊE½ �UUm	 �
U; Vâarð �QQmÞ ¼ ð1 þ m�1ÞÊE½Bm	, and an actual coverage rate close to 95%. With
N ¼ 500, the rate’s standard error due to simulation is approximately 1%.
Some combinations of validation criteria and target statistics are uninformative.

For example, for proportions the complete data variance U is a function of Q̂Q and of

the sample size n. For correlations, this variance depends on n only. The validation

Fig. 1. A schematic overview of the validation protocol of multiple imputation.

Table 1. Target statistics implemented.

Uni- or bivariate Type of measurement Target statistic

Univariate Continuous Mean, quantiles

Univariate Categorical Proportions

Bivariate 2 continuous Pearson correlation

Bivariate 1 continuous, 1 categorical Conditional means

Bivariate 2 categorical Log odds-ratio, Cramer’s C
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statistics U and �UUm are therefore not reported for proportions and correlations.

Confidence intervals for each target statistic were determined by the usual methods.

The sampling distribution of the Cramer’s C measure is intricate, and very skew for

population values near )1 or +1. Coverage rates for Cramer’s C are therefore not
computed.

2.4 A class of MAR MDM’s

This section describes the class of Missing at Random (MAR) MDM’s that we

implemented in the validation software. An MDM is called MAR if the probability

that a data entry is missing depends on the observed data and is independent of the

unobserved data. If, in addition, this probability is also independent of the observed

data, then we speak of Missing Completely at Random (MCAR). MCAR is thus a

special case of MAR. The important thing about MAR is that all information about

the missing data is contained in the observed data, but structured in a way that

complicates the analysis.

We start with a complete data matrix Z with n rows and q columns. Let z denote a

row from Z. A missing data pattern (MDP) for z is a vector r ¼ (r1,. . .,rq), where
ri ¼ 1 if zi is observed and ri ¼ 0 if zi is missing (i ¼ 1,. . .,q). There exist 2q possible
MDP’s for vector z. In the sequel we exclude the pattern (1,. . .,1) (i.e., all

observations observed) and (0,. . .,0) (i.e., all observations missing) from the set of

possible MDP’s. The MDM is constructed in two steps. First, an MDP is assigned to

each row z. Next, within the group of rows with identical MDP’s, a certain

proportion of the rows is made incomplete, where the probability may depend on the

observed part of the row.

To be more specific, let parameter a be the expected fraction of incomplete cases,
i.e., the units with at least one missing observation. Denote by f(r) 2 [0,1] the

probability that z is a candidate for MDP r. The probabilities f(r) are specified by the

user and should sum up to 1 over the different MDP’s. Note that f(r) ¼ 0 implies
that r is not a candidate MDP. Each case is assigned a specific MDP by taking a

random draw from the distribution specified by af(r). The expected number of
incomplete cases for MDP r is thus equal to anf(r).
Within the group of all rows with MDP r, missing data are created as follows.

Choose a(r) ¼ (a1(r),. . .,aq(r)) as a vector of weights with q the number of MDP’s
considered, and define the linear combination sðrÞ ¼

Pq
j¼ 1 ajðrÞrjzj. Note that s(r)

is, by construction, a linear combination of the observed data only. In addition,

choose k + 1 quantile breakpoints 0 ¼ h0(r) < h1(r) < � � � < hk(r) ¼ 1 and a
vector g(r) ¼ (1,g2(r),. . .,gk(r)) with the relative risk of being missing with respect
to the first (reference) quantile group. The cases with MDP r are then split into k

groups Ci(r), i ¼ 1,. . .,k, according to the quantiles of the linear combination s(r)
defined by the quantile levels hi(r), i ¼ 0,. . .,k. Next, the entries of row z are

made incomplete with probability Pðz incompletejz 2 CiðrÞÞ ¼ agiðrÞ=ð
Pk

j¼ 1
ðhjðrÞ � hj�1ðrÞÞgjðrÞÞ. It is not difficult to show that this procedure generates an
incomplete data matrix with an expected fraction of incomplete cases a.
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The procedure is defined such that the data are MAR. The vector with weights g

(r) specifies how much the mechanism deviates from MCAR. When all the weights

equal 1, the MDM is MCAR. We can specify a(r) such that s(r) will be highly

correlated with the observed data. This provides a means to create substantial

differences between the complete and incomplete cases.

3 Application

We now demonstrate the validation method for the case of one incomplete

categorical variable. Using the method of Section 2.4, we define four different

MDM’s. The imputation method is based on polytomous regression. Our goal is to

study how well imputation by polytomous regression performs under each of the

mechanisms.

Data are from the Mammography Experience Study, as published in HOSMER and

LEMESHOW (2000). This data set contains six responses from a survey of 412 women

on knowledge, attitude and behavior towards mammography. The variable

’Mammographic experience’ (ME) with response categories: 0 ¼ never, 1 ¼ during
the past year, 2 ¼ over one year ago is modeled by polytomous regression for
ordinal data. This analysis results in estimated response probabilities per category.

We first replace the original ME-variable by random draws based on these

probabilities. This ensures that the polytomous regression model fits the data, and

that complete-data issues will not affect the results.

Simulations are done using N ¼ 500 replications. Every replication starts by
generating 50% of missing data in the data under four different MAR MDM’s,

called MCAR, MARRIGHT, MARTAIL and MARMID. MDM’s MCAR deletes

observations in ME in a random fashion, MARRIGHT creates more missing values

on the right side of the distribution, MARTAIL deletes more cases from both tails,

while MARMID introduces more nonresponse in the center of the distribution.

The three category proportions of ME and the three averages of PB conditional on

the categories of ME are considered as the six target statistics. The complete data

statistic of interest Q̂Q and its variance U are estimated from the complete data with

n ¼ 412. For each replication, i ¼ 1,. . .,500, missing data are generated according to
the specified mechanism, and multiple imputation with m ¼ 5 is applied to the
incomplete data.

Table 2 reports eight validation statistics: three about Q̂Q, two about U, two about

B, and one coverage estimate. An imputation method is considered proper if ÊE½ �QQm	 is
close to Q̂Q, if ÊE½ �UUm	 is close to U, if ÊE½Bm	 is close Vâar½ �QQm	, and if the coverage
coefficient is close to 95%. The column labeled ÊE½Q̂Qcc	 indicates the expected value
obtained by complete case analysis (listwise deletion). Comparing ÊE½Q̂Qcc	 with Q̂Q, we
see that complete case analysis is severely biased under MARRIGHT, MARTAIL

and MARMID. Multiple imputation, however, succeeds to ‘‘repair the damage’’.

ÊE½ �QQm	 is often close to Q̂Q. For example, under MARRIGHT the proportion
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P(ME ¼ 0) is estimated by complete case analysis as 0.62, while the true proportion
is 0.50. Thus, complete case analysis is biased, but multiple imputation is not. Apart

from the trivial MCAR case, this finding is consistent across all mechanisms. Table 2

also shows that the within (U) and between (B) components of the variances are very

close to the ideal values. MARMID appears to be the most difficult case. The

between imputation variances E[Bm] may be slightly too large, e.g., 0.09 instead of

0.06, but the actual coverages are generally very good. All in all, the results clearly

demonstrate that imputing categorical data by polytomous regression is well

behaved under the studied MDM’s.

4 Conclusion

This paper describes a practical strategy for investigating the statistical properties of a

given imputation method on a given data set. The method provides insight into the

bias of the complete data target statistic Q̂Q under multiple imputation, the bias of the

complete data within-imputation variability U, the bias of the between-imputation

variability B, and the coverage of the 95% confidence interval under repeated

imputation.

Table 2. Simulation results of the validation of the method for imputing categorical data by polytomous

regression under several MDM’s.

Validation statistics

Mechanism Target statistic Q̂Q ÊE½Q̂Qcc	 ÊE½�QQm	 U ÊE½ �UUm	 V âar½�QQm	 ÊE½Bm	 95% cvg.

MCAR P(ME ¼ 0) 0.50 0.50 0.49 0.00 0.00 96.4

P(ME ¼ 1) 0.32 0.32 0.33 0.00 0.00 95.2

P(ME ¼ 2) 0.18 0.18 0.18 0.00 0.00 97.6

E(PB|ME ¼ 0) 8.13 8.12 8.11 0.02 0.02 0.01 0.01 95.2

E(PB|ME ¼ 1) 6.79 6.80 6.82 0.02 0.02 0.02 0.02 95.6

E(PB|ME ¼ 2) 7.34 7.34 7.37 0.06 0.06 0.05 0.05 94.8

MARRIGHT P(ME ¼ 0) 0.50 0.62 0.50 0.00 0.00 96.0

P(ME ¼ 1) 0.32 0.21 0.32 0.00 0.00 97.8

P(ME ¼ 2) 0.18 0.16 0.18 0.00 0.00 97.0

E(PB|ME ¼ 0) 8.13 8.55 8.07 0.02 0.02 0.01 0.01 93.8

E(PB|ME ¼ 1) 6.79 7.67 6.84 0.02 0.02 0.01 0.02 99.0

E(PB|ME ¼ 2) 7.34 8.19 7.47 0.06 0.06 0.05 0.05 95.8

MARTAIL P(ME ¼ 0) 0.50 0.44 0.49 0.00 0.00 92.8

P(ME ¼ 1) 0.32 0.38 0.33 0.00 0.00 94.8

P(ME ¼ 2) 0.18 0.18 0.18 0.00 0.00 96.2

E(PB|ME ¼ 0) 8.13 7.76 8.14 0.02 0.02 0.01 0.01 95.2

E(PB|ME ¼ 1) 6.79 6.45 6.83 0.02 0.02 0.02 0.02 95.6

E(PB|ME ¼ 2) 7.34 6.81 7.29 0.06 0.06 0.06 0.05 92.6

MARMID P(ME ¼ 0) 0.50 0.61 0.52 0.00 0.00 97.2

P(ME ¼ 1) 0.32 0.22 0.31 0.00 0.00 98.2

P(ME ¼ 2) 0.18 0.17 0.17 0.00 0.00 96.6

E(PB|ME ¼ 0) 8.13 8.59 7.99 0.02 0.02 0.01 0.02 94.2

E(PB|ME ¼ 1) 6.79 7.81 6.85 0.02 0.03 0.02 0.04 99.0

E(PB|ME ¼ 2) 7.34 8.34 7.62 0.06 0.06 0.06 0.09 93.8
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The validation strategy has been implemented in a SAS/IML module. It was used

extensively to calibrate imputation methods in a project to build a missing data

engine (cf., BRAND et al., 1994; VAN BUUREN et al., 1994; BRAND, 1999). The

software contains imputation methods and pooling methods, and is based on the

same Gibbs sampling algorithm that is used in the S-Plus MICE library (VAN

BUUREN et al. 1999, 2000). One might thus also apply the software for the sole

purpose of creating imputations under the Gibbs sampler. The properties of the

Gibbs sampling imputation algorithm are published elsewhere.

We introduced a new method for creating missing entries in multivariate data

according to a known MDM. We have limited the presentation to the class of MAR

MDM’s, but it is straightforward to generalize the method to include non-MAR

MDM’s. In fact, the software contains a routine to create MDM’s that are not

MAR.

Finally, this paper describes a method to study methods. We expect that in the

coming years we will see many new and specialized imputation methods. We hope

that our toolbox may assist in evaluating the properties of these methods.
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