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Multiple imputation of discrete and continuous
data by fully conditional specification

Stef van Buuren TNO Quality of Life, Leiden, The Netherlands and University of Utrecht,
The Netherlands

The goal ofmultiple imputation is to provide valid inferences for statistical estimates from incomplete data.
To achieve that goal, imputed values should preserve the structure in the data, as well as the uncertainty
about this structure, and include any knowledge about the process that generated the missing data. Two
approaches for imputing multivariate data exist: joint modeling (JM) and fully conditional specification
(FCS). JM is based on parametric statistical theory, and leads to imputation procedures whose statistical
properties are known. JM is theoretically sound, but the jointmodelmay lack flexibility needed to represent
typical data features, potentially leading to bias. FCS is a semi-parametric and flexible alternative that
specifies the multivariate model by a series of conditional models, one for each incomplete variable. FCS
provides tremendous flexibility and is easy to apply, but its statistical properties are difficult to establish.
Simulation work shows that FCS behaves very well in the cases studied. The present paper reviews and
compares the approaches. JM and FCS were applied to pubertal development data of 3801 Dutch girls
that had missing data on menarche (two categories), breast development (five categories) and pubic hair
development (six stages). Imputations for these data were created under twomodels: a multivariate normal
model with rounding and a conditionally specified discrete model. The JM approach introduced biases
in the reference curves, whereas FCS did not. The paper concludes that FCS is a useful and easily applied
flexible alternative to JM when no convenient and realistic joint distribution can be specified.

1 Introduction

Multiple imputation (MI) is a general statistical method for the analysis of incomplete
data sets.1,2 A statistical analysis using multiple imputation typically comprises three
major steps. The first step involves specifying and generating plausible synthetic data
values, called imputations, for the missing values in the data. This step results in a
number of complete data sets (m) in which the missing data are replaced by random
draws from a distribution of plausible values. The number of imputations, m, typically
varies between 3 and 10. The second step consists of analyzing each imputed data set
by a statistical method that will estimate the quantities of scientific interest. This step
results in m analyses (instead of one), which will differ only because the imputations
differ. The third step pools the m estimates into one estimate, thereby combining the
variation within and across them imputed data sets. Under fairly liberal conditions, this
step results in statistically valid estimates that translate the uncertainty caused by the
missing data into the width of the confidence interval.
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MI is a highly modular statistical method in the sense that the steps can be executed
separately, and with relatively limited interaction between the steps. The major rule that
connects steps 1 and 2 is that every relation to be studied in the step 2 should, in some
way, be included into the specification of the plausible values for the missing data in
step 1. Failure to do so may bias the estimates towards the null, the amount of which
depends on the amount of missing data and the strength of the relationship of interest.
It should be pointed out however that for such failures to occur the relations have to be
quite strong and the amount of missing information has to be quite high.3

Rubin formulated the main principles of MI already at the end of the 70 s,4 but the
uptake of the technique has been rather slow. The number of applications ofMI in health
is currently growing at a fair rate. Figure 1 plots the number of citations per years of
Rubin’s1 book in medical journals and in all journals (source: www.scopus.com). About
half of all applications of MI occur in the medical field. There is a steady rise in the
number of citations. Of course, we have to take into account that the citation database
has more coverage in the recent years. For comparison, we included the number of
references in medical journals to the classic EM paper by Dempster et al.5 Relative to
that work, the number of applications of MI is growing.
We refer to Little and Rubin6 for a discussion of the relative merits of approaches to

missing data other than MI, for example ad hoc methods, direct maximum likelihood
and weighting. Schafer’s7 book is the standard work of imputation for multivariate
data. Introductions into MI have been written by Schafer, Stern et al. and Allison.8–10

The overview by Schafer and Graham11 addresses many practical points relevant to the

Figure 1 Number of citations per year in medical journals of the EM-algorithm5 and multiple imputation.1

Source: www.scopus.com, assessed May 8, 2006.
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application of MI. Overviews of MI in health have been written by Rubin and Schenker
and Barnard and Meng.12,13 Evaluations of MI and comparative reviews have appeared
in various medical fields: epidemiology,14–16 psychiatric and developmental research,17

nursing research,18–21 public health,22–24 cost and outcomes research,25–27 quality of
life,(28) and physical activity,29,30 educational research,31,32 and chemometrics.33 More
methodologically oriented comparative reviews have appeared on multilevel models,34

structural equation modeling,35,36 methods for longitudinal data,37,38 attrition prob-
lems in longitudinal data,39,40 drop out in clinical trials,41–46 and meta-analysis.47

Ibrahim et al.48 provide a comparative review of various advanced missing data meth-
ods. Schafer49 comparesBayesianMImethodswithdirectmaximum likelihoodmethods.
Taken together, these references provide abundant evidence on the value and vitality of
MI in health research.
The present paper deals with the question how to create multiple imputations for

multivariate data. The paper provides an overview of methods for generating multiple
imputations, starting from basic methods where the missing values are confined to one
variable, and continuing to more advanced methods for dealing with general patterns
of missing values in multivariate data of various types, including mixes of categorical
and continuous data. We distinguish between approaches based on both joint modeling
(JM) and fully conditional specification (FCS). An application on pubertal data from
the Fourth Dutch Growth Study illustrates the principles.

2 Method

2.1 Notation
Let Yj be one of k incomplete random variables ( j = 1, . . . , k) and let Y =

(Y1, . . . ,Yk). The observed andmissing parts ofYj are denoted byYobsj andYmisj , respec-

tively, so Yobs = (Yobs1 , . . . ,Yobs
k

) and Ymis = (Ymis1 , . . . ,Ymis
k

) stand for the observed
and missing data in Y. Let Y−j = (Y1, . . . ,Yj−1,Yj+1, . . . ,Yk) denote the collec-
tion of the k − 1 variables in Y except Yj. Let Rj be the response indicator of Yj,
with Rj = 1 if Yj is observed and Rj = 0 if Yj is missing. Let R = (R1, . . . ,Rk) and
R−j = (R1, . . . ,Rj−1,Rj+1, . . . ,Rk). LetX = (X1, . . . ,Xl) be a set of l complete covari-
ates on the same subjects. In order to avoid distracting complexities, we assume that the
observations in Y,X and R correspond to a simple random sample from the population
of interest.

2.2 Imputation models
Rubin1 (Ch. 5) distinguished three tasks for creating imputations under an explicit

model: the modeling task the imputation task and the estimation task. The model-
ing task is to provide a specification for the hypothetical joint distribution P(Y,X,R)
of all data. The imputation task sets out to derive the posterior predictive distri-

bution P(Ymis|Yobs,X,R) of the missing values Ymis given the observed data. The
estimating task consists of calculating the posterior distribution of the parameters of
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this distribution, so that random draws can be made from it. According to Rubin’s
framework, the imputations follow from the specification of the joint model P(Y,X,R).
In practice, it is often difficult to specify a realistic joint model P(Y,X,R). Model

P(Y,X,R) embraces both the model for generating the imputations and the scientifi-
cally interesting model for which the data were sampled in the first place. This dual role
of P(Y,X,R) puts a heavy burden on its specification. Several classes of joint models
have been proposed. Schafer developed joint models (JM) for imputation under the mul-
tivariate normal (MVN), the log-linear and the general location model.7 The methods
are theoretically elegant, but they often lack flexibility to account for important fea-
tures of the data. For example, if the data contain derived variables (e.g., sum scores,
transformations, indices) onewould like the imputation procedure to ensure consistency
between the constituent parts.Multivariate imputation according to a joint model could
also create impossible combinations like ‘pregnant fathers’, which are better avoided in
the imputed data. The rows or columns could have a meaningful order, for example, as
in longitudinal data. Real data often consist of amix of different scale types (e.g., binary,
unordered, ordered, continuous). Also, the relation between Yj and predictors Y−j can
be complex, for example, nonlinear or be subject to censoring or rounding or contain
interactions that are important. Enforcing parametric joint models P(Y,X,R) on the
data potentially discards interesting features in the data that we may wish to investigate
andmay thus severely limit the class of scientific models that may be legitimately applied
to the imputed data.
Fortunately, imputations of high quality can be generated without an explicit specifi-

cation of P(Y,X,R). An imputation model P(Ymis|X,Yobs,R) describes how synthetic
values for Ymis = (Ymis1 , . . . ,Ymis

k
) are generated. The imputation model can be an

explicit probability model, or an implicit model, like hot-deck (Little and Rubin, 2002,
p. 67). In principle, the imputation model can correspond to any method to augment
the data, as long as it yields imputations that are proper in the sense of Rubin (1987,
p. 119). A procedure is proper if particular conditions hold for the complete-data statis-
tics and the within and between imputation variances in the casem = ∞. An important
requirement for a procedure to be proper is that the variability of the parameters of
the imputation model should be included into the generated imputations, a property
that Schafer7 calls ‘Bayesianly proper’. It is actually difficult to demonstrate proper-
ness analytically in a given case (Schafer, 1997, p. 145). Brand et al.50 for a validation
strategy based on simulation to assess various aspects of properness. Note that the

imputation model P(Ymis|X,Yobs,R) need not make an explicit reference to a specifica-
tion for P(Y,X,R) and that it does not automatically follow from the joint distribution
P(Y,X,R). Imputation models bypass the need to specify P(Y,X,R), though their use
creates new responsibilities for substantiating its correctness for a given statistical anal-

ysis. Instead of specifying P(Y,X,R), using models P(Ymis|X,Yobs,R) is a separate
modeling activity that comes with its own goals and rules.3,49,51–53

This paper is based on the idea that we may bypass the (joint) modeling
task, and directly specify a sensible model for creating multivariate imputa-

tions P(Ymis|X,Yobs,R). A convenient way of doing that is to generate imputa-
tions in multivariate data variable-by-variable by specifying a conditional model
P(Ymisj |X,Y−j,R) for each Yj, j = 1, . . . , k.
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2.3 Ignorability
Let us first look at the role of R within the imputation model. The imputation model

for variable j, P(Ymisj |X,Y−j,R), exploits relations between and within Y, X and R. Let

us for the moment assume that k = 1, so that there is only one Y with missing data.
In that case, the information about Y that is present in X and R is summarized by
the conditional distribution P(Y|X,R). Cases with missing Y, that is, with R = 0, do
not provide any information about P(Y|X,R), and so in actual data analysis it is only
possible to fit models for P(Y|X,R = 1). It is, however, the distribution P(Y|X,R = 0)
that we need to draw imputations from, and the central problem is how to specify that
distribution. The conventional procedure is to equate P(Y|X,R = 0) = P(Y|X,R = 1),
which corresponds to the assumption that the response mechanism is ignorable (Rubin,
1987, pp. 51–53).
The assumption of ignorability is often sensible in practice and generally provides

a natural starting point. If, on the other hand, the assumption is not reasonable (e.g.,
when data are censored), wemay use other forms for P(Y|X,R = 0). The fact thatR = 0
allows for the possibility that P(Y|X,R = 1) 6= P(Y|X,R = 0) (Rubin, 1987, p. 205). By
definition, the specification of P(Y|X,R = 0) needs assumptions external to the data. As
long as the imputations reflect the correct amount of uncertainty about the values that
are missing, there is nothing in the theory of MI that prevents appropriate inferences
under P(Y|X,R = 0). MI will also work for nonignorable response mechanisms.

Example: Suppose that a growth study measures body weight in kg (Y) and gender
(X1: 1 = boy, 0 = girl) of 15-year old children, and that some of the body weights are
missing.We canmodel theweight distribution for boys and girls separately for thosewith
observed weights, that is, P(Y|X1 = 1,R = 1) and P(Y|X1 = 0,R = 1). If we assume
that the response mechanism is ignorable, then imputations for a boy’s weight can be
drawn from P(Y|X1 = 1,R = 0) = P(Y|X1 = 1,R = 1). The same can be done for girls.
This procedure leads to correct inferences on the combined sample of boys and girls, even
if boys have substantiallymoremissing values, or if the bodyweights of the boys and girls
are very different. The procedure is however not appropriate if, within the group of boys
or the girls, the occurrence of the missing data is related to body weight. For example,
someof the heavier childrenmaynotwant to beweighed, resulting inmoremissing values
for themore obese. It will be clear that assuming P(Y|X1,R = 0) = P(Y|X1,R = 1)will
then underestimate the prevalence of overweight and obesity. In this case, it may be more
realistic to specify P(Y|X1,R = 0) such that imputation accounts for the excess body
weights in the children that were not weighed. There are many ways to do that. In all
these cases the response mechanism will be nonignorable.
The assumption of ignorability is essentially the belief on the part of the user that the

available data are sufficient to correct for the effects of the missing data. The assump-
tion cannot be tested on the data itself, but it can be checked against suitable external
validation data. There are two main strategies that we may pursue if the response mech-
anism is not ignorable. The first is to expand the data and assume ignorability on the
expanded data. In the above example, fat children may simply not want anybody to
know their weight, but perhaps have no objection if their waist circumference (X2) is
measured.The ignorability assumptionP(Y|X,R = 0) = P(Y|X,R = 1) is less stringent
forX = (X1,X2) than forX = (X1), and hence more realistic. The second strategy is to
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formulate P(Y|X,R = 0) different from P(Y|X,R = 1), describing which body weights
would have beenobserved if they hadbeenmeasured.Candidates for suchmodels include
the pattern mixture model and the selection model, though application of such models
requires untestable a priori assumptions beyond the data (Little andRubin, 2002, Ch. 15;
Schafer, 1997, p. 28).6,7

We may disregard R in the imputation model if we are prepared to make the assump-
tion of ignorability. If this is not realistic, then we can pursue one of the two strategies
outlined above. Of course, any such methods need to be explained and justified as part
of the statistical analysis.

3 Univariate and monotone imputation

For both theoretical and practical reasons, it is useful to distinguish between monotone
and nonmonotone missing data patterns. A pattern is monotone if the variables can be
ordered such that, for each person, all earlier variables are observed if the later variable is
observed. Monotone patterns often occur as a result of dropout in a longitudinal study.
It is often useful to sort variables and cases to approach a monotone pattern. Figure 2
depicts various monotone and nonmonotone missing data patterns.

3.1 Univariate methods
An important special case of a monotone missing data pattern occurs when k = 1. In

that case, there is only one Y that needs to be imputed and the remaining data X are all
complete. Table 1 contains an overview of various methods that have been proposed for
generating multiple imputations for univariate data. Many methods are variations on
the linear regression method proposed by Rubin (1987, p. 166).1

3.2 Monotone patterns
Imputations for multivariate missing data can be imputed by a sequence of univari-

ate methods if the missing data pattern is monotone-distinct.1 Suppose that variables
Y1, . . . ,Yk are ordered in a monotone pattern such that for j = 1, . . . , k − 1, all cases
with missing data in Yj also have missing data in Y>j. If, in addition, the parameters
φ1, . . . ,φk of the imputation models are a priori independent, that is, if they factor into
independent marginal priors, we can draw a set of multivariate imputations using the
following sequence of univariate imputation models

P(Ymis1 |X,φ1)

P(Ymis2 |X,Y∗
1,φ2)

. . .

P(Ymisk |X,Y∗
1, . . . ,Y

∗
k−1,φk)

where notation Y∗
j stands for the jth imputed variable. The sequence can be replicated

m times from different starting points to obtain multiple imputations. Univariate meth-
ods such as listed in Table 1 can be used as building blocks. There is no need to iterate.
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Figure 2 Four types of missing data patterns in multivariate data. The grey parts represent observed data,
whereas the empty parts indicate missing data.

Since this procedure is convenient, it is often useful to identify whether the data can be
ordered to a (nearly) monotone pattern. It is beneficial to impute to entries that destroy
the monotone pattern first and then apply the above method.7,77,78 It may however be
impossible to reorder variables into a monotone pattern. In that case, we need a truly
multivariate imputation method.
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Table 1 Overview of imputation methods in univariate missing data problems

Type of variable Method References

Ignorable methods
Continuous Linear regression Rubin (1987)1

Schenker and Taylor (1986)54

Linear regression + empirical residuals Rubin (1987)1

Schenker and Taylor (1986)54

Predictive mean matching Rubin (1986)55

Little (1988)56

Schenker and Taylor (1986)54

Nonlinear regression Harrell (2001)57

Truncated normal model Schafer (1997, p. 204)7

Binary Logistic regression Rubin (1987, p. 169)1

Probit regression Albert and Chib (1993)58

Measurement error and reporting model Yucel and Zaslavsky (2005)59

Categorical Polytomous logistic regression Brand et al. (2003)50

Discriminant analysis Brand (1999)60

Semi-continuousa Two step: logistic + linear Rubin (1987, p. 180)1

General location model
Counts Poisson regression Raghunathan et al. (2001)61

General Approximate Bayesian bootstrap Rubin (1987)1

Parzen et al. (2005)62

Hot-deck Reilly and Pepe (1997)63

Machine learning methods Junninen (2004)64

Polya tree Paddock (2002)65

Nonignorable methods
Continuous Normal selection model Heckman (1976)66

Logit selection model Greenlees et al. (1983)67

Censored data Data augmentation Wei and Tanner (1991)68

Clustered censored data GEE Pan and Connett (2001)69

Interval censored Proportional hazard model Goetghebeur and Ryan (2000)70

Pan (2000)71

Limited dependent variables DeFries–Fulker regression Bechger et al. (2002)72

Below detection limit Custom model Hopke et al. (2001)73

Lubin et al. (2004)74

Pedigree relations Custom model Fridley (2003)75

Bracketed responses Custom model Heeringa et al. (2002)76

aA mixture of discrete and continuous distribution.

4 Multivariate imputation methods

4.1 Joint modeling (JM)
The JM approach partitions the observations into groups of identical missing data

patterns and imputes the missing entries within each pattern according to a joint model
for X, Y and R that is common to all observations. The first such model was published
by Rubin and Schafer.77 Schafer developed sophisticated JM methods for generating
multivariate imputationsunder theMVN, the log-linear and the general locationmodel.7

These methods start by specifying a parametric multivariate density P(Y,X,R|θ) for the
data Y,X and R given the model parameters θ . Under an appropriate prior distribution
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for θ , it is possible to derive the appropriate submodel for each missing data pattern,
fromwhich imputations are drawn, usually under the assumptionof an ignorablemissing
data mechanism. These methods are available as tools in S-Plus 7.0 and SAS V8.2 and
are widely applied.

4.2 Fully conditional specification (FCS)
The FCS approach is to impute the data on a variable-by-variable basis by specifying

an imputationmodel per variable. FCS is an attempt to define P(Y,X,R|θ) by specifying
a conditional density P(Yj|X,Y−j,R, θj) for eachYj. This density is used to imputeYmisj

givenX, Y−j and R. Starting from simple guessed values, imputation under FCS is done
by iterating over all conditionally specified imputationmodels.Methods listed in Table 1
may act as building blocks. One iteration consists of one cycle through allYj. If the joint
distribution defined by the specified conditional distributions exists, then this process is
a Gibbs sampler.
FCS has some practical advantages over JM. FCS allows tremendous flexibility in

creating multivariate models. One can easily specify models that are outside any known
standardmultivariate density P(X,Y,R|θ). FCS can use specialized imputationmethods
that are difficult to formulate as a part of amultivariate densityP(X,Y,R|θ). Imputation
methods that preserve unique features in the data, for example, bounds, skip patterns,
interactions, bracketed responses and so on can be incorporated. It is straightforward to
maintain constraints between different variables in order to avoid logical inconsistencies
in the imputed data. It would be rather difficult to formulate such constraints in terms of
the multivariate density P(X,Y,R|θ). Each conditional density has to be specified sepa-
rately, so some modeling effort may be required on the part of the user. Computational
shortcuts like the sweep operator6 cannot be used anymore, so the calculations could
be more intensive than for JM.
Despite the lack of a satisfactory theory, FCS seems to work quite well in many

applications. A number of simulation studies provide evidence that FCS generally yields
estimates that are unbiased and that possess appropriate coverage, at least in the variety
of cases investigated.50,60,61,79,80

The basic idea of FCS is already quite old and has been proposed using a
variety of names: stochastic relaxation,81 variable-by-variable imputation,60 regres-
sion switching,52 sequential regressions,61 ordered pseudo-Gibbs sampler,82 partially
incompatible MCMC,78 iterated univariate imputation,83 chained equations84 and
FCS.79

4.3 Relations between FCS and JM
FCS is related to JM in some cases. If P(X,Y) has an MVN model distribution, then

all conditional densities are linear regressions with a constant normal error variance.
So, if P(X,Y) is MVN then P(Yj|X,Y−j) follows a linear regression model. The reverse
is also true: if the imputation models P(Yj|X,Y−j) are all linear with constant normal
error variance, then the joint distribution will beMVN.We refer to Arnold et al. (p. 186)
for a description of the precise conditions.85 Thus, imputation by FCS using all linear
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regressions is identical to imputation under theMVNmodel. In that case, the algorithm
is a real Gibbs sampler, and convergence is guaranteed.
Another special case occurs for binary variables with only two-way interactions in

the log-linear model. For example, in the case k = 3, suppose that Y1, . . . ,Y3 are mod-
eled by the log-linear model that has the three-way interaction term set to zero. It
is known that the corresponding conditional distribution P(Y1|Y2,Y3) is the logistic
regression model log(P(Y1)/1− P(Y1)) = β0 + β2Y2 + β3Y3.

86 Analogous definitions
exist for P(Y2|Y1,Y3) andP(Y3|Y1,Y2). Thismeans that ifwe use logistic regressions for
Y1,Y2 andY3, we are effectively imputing under multivariate ‘no three-way interaction’
log-linear model. In this case, the method is also a Gibbs sampler.

5 Issues in FCS

5.1 Compatibility
It is quite easy to specify a set of conditional distributions for which no multi-

variate density exists. An example is the combination of Y2|Y1 ∼ N(α2 + β1Y1, σ
2
1 )

with Y1|Y2 ∼ N(α1 + β2 log(Y2), σ
2
2 ), but the issues involved are actually quite subtle.

Incompatibility is a theoretical weakness of FCS, because it is not known to which mul-
tivariate distribution the algorithm converges. The limiting distribution to which the
algorithm converges may depend on the order of the univariate imputation steps, which
may or may not be desirable in a given context. Consequently, assessing convergence
is a somewhat ambiguous activity. The issue is known as incompatibility of condition-
als, and has been studied by various authors.85,87–89 Gelman and Speed89 showed that
the joint distribution for Y1, . . . ,Y3, if it exists, is uniquely specified by the follow-
ing set of three conditionals: P(Y1|Y2,Y3), P(Y2|Y3) and P(Y3|Y1). Imputation under
FCS typically specifies general forms for P(Y1|Y2,Y3), P(Y2|Y1,Y3) and P(Y3|Y1,Y2)
and estimates the free parameters for these conditionals from the data. Typically, the
number of parameters in imputation is much larger than needed to uniquely determine
P(Y1,Y2,Y3).
Notmuch is known about the consequences of incompatibility on the quality of impu-

tations. Van Buuren et al.79 report some simulations under some strongly incompatible
models and observe that the adverse effects on the estimates afterMIwere onlyminimal.
More work is needed to verify such claims in more general and more realistic settings.
In cases where the multivariate density is of genuine scientific interest, incompatibility

clearly represents a problem because the data cannot be represented by a formal model.
So given the dual role of P(Y,X,R) for both analysis and imputation (Section 2.2),
incompatibility is clearly undesirable within a JM context. In imputation however, the
objective is to augment the data and preserve the relations in the data. In that case,
the joint distribution is more like a nuisance factor that has no intrinsic value. Gelman
remarked: ‘One may argue that having a joint distribution in the imputation is less
important than incorporating information from other variables and unique features of
the dataset (e.g., zero/nonzero features in income components, bounds, skip patterns,
nonlinearity, interactions).83
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FCS is highly important from a practical point of view because it adapts so well to the
data. FCS is guaranteed to work if the conditionals are compatible and some evidence
is available on the robustness of FCS against incompatibility.

5.2 Assessment of convergence
Whenm sampling streams are calculated in parallel, monitoring convergence is done

by plotting the draws in each stream against time for a set of selected parameters. The
pattern should be inspected for any absence of trend, and convergence can be assessed
by test statistics that combine within and between variation.90

In practice, we have seen many cases where essentially nothing happened after the
first few iterations. In those applications, we have therefore set the main number of
FCS iterations quite low, usually somewhere between 5 and 20 iterations. This num-
ber is much lower than in other applications of MCMC methods, which often require
thousands of iterations. There are exceptions however. In order to demonstrate this,
consider a small simulation experiment with three variables: one complete covariate X
and two incomplete variables Y1 and Y2. The data consisted of 10 000 draws from the
MVN distribution with correlations ρ(X,Y1) = ρ(X,Y2) = 0.9 and ρ(Y1,Y2) = 0.7.
The number of complete cases (CC) was varied as nCC = (1000, 500, 250, 100, 50, 0).
Missing data were randomly created in two patterns (X, NA,Y2) and (X,Y1, NA), both
of size (10 000− nCC)/2, where symbol ‘NA’ stands for themissing entry. Amissing data
pattern like this may result in statistical matching problems, whereY1 andY2 are jointly
observed only for a subset of nCC cases.

55 The difficulty in this particular problem is
that the correlation ρ(Y1,Y2) under conditional independence of Y1 and Y2 given X is
equal to 0.9× 0.9 = 0.81, whereas the true value equals 0.7. We used compatible lin-
ear regressions Y1 = β1,0 + β1,2Y2 + β1,3X + ε1 and Y2 = β2,0 + β2,1Y1 + β2,3X + ε2
to impute Y1 and Y2, so the algorithm is a Gibbs sampler.
Figure 3 shows the development of ρ(Y1,Y2) calculated on the completed data after

every iteration of the Gibbs sampler. At iteration 1, ρ(Y1,Y2) is around 0.40 (not shown
in the figure), due to the random starting imputations. At iteration 2, ρ(Y1,Y2) jumps to
the value expected givenX only. After iteration 2, the influence of the nCC pairswith both
Y1 andY2 observed percolates into the imputations, so that the chains slowly move into
the direction of the population value of 0.7. The speed of convergence heavily depends on
the value of nCC. If nCC = 1000, that is, if 90% of the record are incomplete, the streams
are essentially flat after about 15 iterations. If nCC = 0, the correlation ρ(Y1,Y2) is
unidentified because there is no information about it in the data. The streams do not
converge at all, and wander widely within the Cauchy–Schwarz bounds (0.6–1.0 here).
The Cauchy–Schwarz inequality provides the upper and lower bounds for a correlation
ρ(Y1,Y2) in a positive semi-definite correlation matrix. The lesson from this simulation
is that we should be quite careful about convergence in missing data patterns that results
from, for example, statistical matching problems.
One final note of interest in this analysis is the following. In the case nCC = 0we could

stop at iteration 200 and take the imputations from there. From a Bayesian perspective,
this still would yield a valid inference on ρ(Y1,Y2). The mean value of ρ(Y1,Y2) was
equal to 0.812, and its standard error after pooling was large for this sample size: 0.087.
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Figure 3 Correlation between Y1 and Y2 in the imputed data per iteration in five independent runs of the Gibbs
sampler. The number nCC represents the sample size for which both Y1 and Y2 are observed. The vertical line at
iteration 1 represents the jump in correlation that occurs when the unconditional random starting imputation
is replaced by the first conditional imputation.

This is a signal that ρ(Y1,Y2) can be anywhere within interval defined by the Cauchy–
Schwarz bounds. Under the assumption of a flat prior distribution of an unidentified
parameter, this adequately summarizes the available evidence about ρ(Y1,Y2). So even
in this pathological case with 100% missing data, the analysis tells the appropriate
story. The key factor here is that the appropriate amount of variation between streams
is achieved. As long as that is the case, pooling under MI seems to acts as a safety net
for estimates that are off-target.
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Of course, it never hurts to do a couple of extra iterations or to start more streams,
but good results can often be obtained with a small number of iterations.

5.3 Software
Systems for creating multiple imputations by FCS include FRITZ,81 IVEWARE

in SAS,61 HERMES missing data engine,60 MICE in S-Plus and R,84 and ICE, an
implementation of MICE to Stata.91–92

6 Fourth Dutch Growth Study

The Fourth Dutch Growth Study93 collected data on 14 500 Dutch children between
0 and 21 years. The development of secondary pubertal characteristics was measured
by the so-called Tanner stages, which divides the continuous process of maturation
into discrete stages for the ages between 8 and 21 years.94 Stages for girls are defined
for menarche (two stages), breast development (five stages B1–B5), and pubic hair (six
stages P1–P6). Collecting the data requires the examination of the child by a trained
nurse. In the growth study, many children did not receive Tanner scores, usually because
the nurse felt that the measurement was ‘unnecessary’, or because the child did not give
permission. Table 2 provides the contingency table of the data. Table 3 lists the response
patterns for the three measures in 3801 girls (out of 3804) that had complete information
on age, height and weight. Strictly speaking, age, height and weight are not completely
observed covariates because they had three missing values in the original sample of 3804
girls. For the matter of illustration, these three rows are ignored here, so age, height and
weight are assumed to be complete covariates. About 34% of the pubertal data were
missing. Figure 4 shows that older girls had more missing values in scores for breast
development and pubic hair.
Mul et al.95 published reference curves for these data by deleting all girls that had

one or more missing scores. The analysis by Mul et al. consisted of a regression of an
incompletely observed outcome (Tanner stage) on a completely observed covariate (age).
Under the assumption of ignorability, this CC analysis will not bias the age-conditional
reference intervals,96 though it may create sparse data, especially for the older girls. In
addition, deleting incomplete records in analyses where the Tanner stages have a role as
predictors may yield biased estimates. In order to study the influence of these effects, we
multiply imputed the missing Tanner stages.
The data consist of three complete covariates (X1 = Age,X2 = Height,X3 = Weight)

and three incomplete variables (Y1 = Menarche, Y2 = Breast stage, Y3 = Pubic hair
stage). The data are imputed five (m = 5) times by two multivariate methods: MVN
and FCS. The MVNmethod draws imputations under the MVNmodel and rounds the
imputations to the nearest integer to accommodate the categorical nature of the Tanner
stages. The FCS method creates imputations for Y1 by means of logistic regression
conditional on X and Y−1 under the standard noninformative prior (Rubin, p. 169).

1

For Y2 and Y3, imputations were generated by polytomous logistic regression (Brand,
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Table 2 Frequency table of pubertal development: menarche status, breast development and pubic hair
of 3801 Dutch girls

Menarche status Breast development stage Pubic hair stage

P1 P2 P3 P4 P5 P6 Missing

No B1 458 53 5 0 0 0 11
B2 121 131 50 4 0 0 11
B3 19 47 100 39 6 0 8
B4 0 2 25 58 15 2 5
B5 0 1 0 13 12 1 0

Missing 0 0 1 0 0 0 155

Yes B1 6 1 0 0 0 0 0
B2 2 3 0 0 0 0 0
B3 0 2 14 19 10 5 3
B4 0 0 11 127 141 21 4
B5 0 0 6 53 489 128 6

Missing 0 0 1 0 1 0 587

Missing B1 6 1 0 0 0 0 0
B2 1 3 0 0 0 0 2
B3 0 1 3 0 1 0 1
B4 0 0 0 2 0 0 2
B5 0 0 0 3 2 1 1

Missing 0 0 1 0 0 0 777

Source: Fourth Dutch Growth Study.93

1999, Ch. 4).60 For Y2 the generalized logit model for polytomous categories
97

ln
P(Y2 = c)

P(Y2 = 1)
= [X,Y−2]β

′
c for c = 2, . . . , 5

was fitted by the multinom() function of Venables and Ripley (2002).98 This function

yields estimates β̂ = [β̂2, . . . , β̂5], and its posterior variance–covariance V̂(β̂) was cal-

culated by the function vcov(). A random draw is made from β∗ ∼ N(β̂, V̂(β̂)), which
is then plugged back into the object generated by multinom(). For each observation
withmissingY2, the function predict.multinom() calculated the class probability

Table 3 Response patterns (1 = observed, 0 = missing)
of pubertal characteristics of 3801 girls from the Fourth
Dutch Growth Study93

Menarche Breast Pubic hair Frequency

1 1 1 2200
0 1 1 24
1 1 0 48
1 0 1 3
0 1 0 6
0 0 1 1
1 0 0 742
0 0 0 777

Total 808 1523 1573 3801
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Figure 4 The probability of missingness for menarche, breast development and pubic hair development as
a function of age of the girl.
Source: Fourth Dutch Growth Study.93

conditional on X and Y−2, which were then used to draw imputations for the missing
category score. Brand et al.50 investigated the quality of the imputations of this method
and found that it leads to minimal bias and appropriate coverage under a variety of
missing data mechanisms. An analogous procedure was followed for imputing Y3.
The above procedure for polytomous regression becomes computationally prohibitive

if sample size is large, as finding V̂(β̂) requires calculation of the Hessian matrix. An
alternative is not to draw β∗ from its posterior but set it equal to the ‘plug-in estimate’,

that is β∗ = β̂. Such a procedure is improper in terms of Rubin as it ignores the variabil-

ity of β̂. However, the difference between using the proper procedure and the plug-in
methods is generally quite small if sample size is large. As the sample consisted of about
2200 complete records, we used the fast plug-in estimate.
After imputation, we conducted several complete-data analyses that assessed different

aspects of the solution. These analyses were performed on 1) CC, 2) the imputed and
rounded data under the fully normal model (MVN) and 3) the imputed data under the
FCS. All calculations were performed in S-Plus using the MICE V1.12 library.84

We used correspondence analysis of Y2 and Y3 to investigate how well imputation
preserves the structure between the stages of B1–B5 and P1–P6. For a three-dimensional
solution, the CC analysis yielded canonical correlations of 0.940, 0.613 and 0.385. Under
MVN, the canonical correlations averaged over the five imputed data sets were equal to
0.927, 0.647 and 0.402. For FCS, we obtained 0.940, 0.627 and 0.396, which is slightly
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closer to the CC analysis. The scale values per categorywere quite similar in the different
solution.
Next, we modeled the distribution of body weight (X3) for a given age (X1), height

(X2) and stages of pubertal development (Y1, . . . ,Y3). Table 4 contains the results of
modeling log weight by a simple linear model with only main effects under the three
missing data methods. Pubic hair (Y3)was not a significant predictor in any model, and
was therefore omitted. Due to a larger sample size, the standard errors of the estimates of
MVNor FCS are smaller than of CC. Themodels predict equally well: all had r2 = 0.79.
For MVN and FCS, r2 was calculated by taking the average r2 of the five regressions.
Though some differences occur in the individual estimates (e.g., for menarche, age) or
in the fraction of missing information (e.g., for B2), the overall impression is that the
models behave very similarly.
The above analysis suggests that the results of rounded MVN and FCS hardly differ,

but that conclusion would not be correct. In fact, the methods may lead to substan-
tially different estimates for the reference curves. We refitted the reference curves on the
imputed data and compared the results to the curves published by Mul et al.95 For each
stage transition of breast development, a reference curve was fitted conditional on age
by a series of four logistic additive models

log
P(Y2 < c)

P(Y2 ≥ c)
= αc + fc(X1), c = 2, . . . , 5

where fc() are arbitrary univariate functions of age (X1). These models were fitted by
the S-Plus gam() function with a binomial distribution with a logit link. Hastie and
Tibshirani (1990, Ch. 6)99 formore details. The default number of degrees of smoothness
(df = 4) generally provided a good compromise between smoothness and fit, and was
used in all analyses.

Table 4 Parameters estimates of three linear regression models for predicting 100 log
(body weight in kg) in Dutch girls

Parameter CC MVN FCS

est se est se fmi est se fmi

Age (yrs) 0.72 0.18 0.97 0.12 0.03 0.77 0.12 0.02
Height (cm) 1.27 0.04 1.25 0.03 0.05 1.25 0.03 0.01
Menarche 2.80 0.77 2.65 0.61 0.23 3.85 0.90 0.23
B1∗ 0 0 0
B2 5.37 0.98 5.27 0.94 0.24 5.44 0.85 0.06
B3 8.98 1.18 9.30 0.98 0.09 8.50 0.98 0.08
B4 11.32 1.44 11.82 1.15 0.08 11.23 1.22 0.19
B5 18.13 1.62 16.62 1.37 0.18 17.83 1.30 0.12
Intercept 164.72 6.00 164.44 4.58 0.07 164.66 4.35 0.01

n 2200 3801 3801
r2 0.79 0.79 0.79

The CC analysis uses only the complete cases (n = 2200), the rounded MVN and FCS
methods are fitted on the full sample after multiple imputation and pooling (n = 3801).
Stage B1 is the reference stage. fmi = fraction of missing information. Symbol r2

denotes the proportion of variance explained by the model.

© 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at SWETS WISE ONLINE CONTENT on July 31, 2007 http://smm.sagepub.comDownloaded from 



Multiple imputation of discrete and continuous data 235

Under the assumption that the breast stage data are ignorable given [X,Yobs−2 ], the
reference curves emanating from the imputed data and from the CC have the same
expectation. Figures 5 and 6 contain the resulting references under the MVN and FCS
methods. The thick lines are the published reference curves based on the CC only. Under
ignorability, the reference curves from the imputed data should on average be equal to
the published curves.
Figure 5 shows that the rounded MVN method produces biased estimates at several

points. For very young children, the MVN method results in probabilities for stage B2
which are too high. For example, the imputed data indicates that at an age of 8.5 years
10% of the girls have entered stage B2. According to the complete data analysis (which
is valid here), that point is actually located at about 9.0 years. At the other end of the
age spectrum, the method overestimates the age at which 50% of the girls have entered
the final stage B5 by more than eight months (15.0 years instead of 14.3 years). These
are large and clinically relevant differences. In general, the rounded MVN produces
imputations that do not follow the bends and twists in the observed data. Note that
approximately half of the case is imputed here, so the effects of the imputed data on the
results are attenuated by the observed data. Analyzing just the cases with the imputed
values would lead to even larger discrepancies.

Figure 5 Reference curves per stage of breast development according to two methods: complete cases only
(thick lines) and multiple imputation (m = 5) under a rounded multivariate normal (MVN) model imputation
model. The MVN model is off target.
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Figure 6 Reference curves per stage of breast development according to two methods: complete cases only
(thick lines) and multiple imputation (m = 5) under a conditionally specified (FCS) imputation model. The FCS
model is on target.

In contrast, the FCS imputation method in Figure 6 behaves very well. There is a
tendency that imputation leads to somewhat smoother reference curves because of the
higher sample size, but the effect is only slight. All in all, we conclude that the FCS
method preserves the important features in the relationship between breast stage and
age that are ignored in rounded MVN.
LikeHorton et al., Ake andAllison100–102we therefore do not recommend the rounded

MVN method when data are categorical. Horton et al. expected that bias problems of
rounding would taper off if variables have more categories, but our analyses suggest
the MVN methods may introduce biases also for discrete data with more than two
categories. The FCS method appears to be free of such problems.

7 Discussion

Creating imputations in multivariate health data is not an easy task. The ultimate
goal of imputation is to yield valid inferences for the statistical estimates of interest
from the imputed data. To achieve that goal, imputation should preserve the struc-
ture in the data, as well as the uncertainty about this structure, and include any
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knowledge about the process that generated the missing data. Two main approaches
have been proposed, JM and FCS. JM stays close to the theory and leads to impu-
tation procedures whose statistical properties are known under a correctly specified
model. FCS is its semi-parametric and flexible cousin that emphasizes features in the
data.
Several authors have been critical on JM in particular contexts. Schenker and Taylor54

performed a simulation study and observed that ‘the fully parametric method breaks
down in several situations, whereas the partially parametric methods maintain their
good performance’. Belin et al.103 assessed the usefulness of the general location model
for a mental health services study and conclude: ‘Our investigations suggest that either
the model or the companion assumption of ignorable nonresponse are not suitable in
our applied context with numerous variables and a complicated pattern of missing
data.’ Gelman and Raghunathan104 address the difficulty of maintaining consistencies
in the imputed data and note that ‘separate regressions often make more sense than
joint models’. Briggs et al.105 imputed cost data and wrote ‘using the algorithm based
on multivariate normality resulted in failure of the algorithm to converge’, and were
forced to dichotomize their data. In order to bypass the limitations of joint models,
Gelman (p. 541) concludes: ‘Thus we are suggesting the use of a new class of models –
inconsistent conditional distributions – that were initially motivated by computational
and analytical convenience.’83

Within the JM context, the data often need to be transformed before imputation
(to make the observed data conform to the imputation model) and after impu-
tation (to make the imputed values conform to the observed data) (Schafer, 1997
p. 147–148, 202–203, 214, 272, 374).7 While such transformations enhance the per-
formance of the JM. Various authors100–102 observed that rounding imputed values to
the closest observed value in the data can introduce a bias in the parameter estimates,
whereas if the imputed data are not rounded, no bias would occur. Our analysis of
the pubertal data provide evidence that rounding bias in JM may also show up in real
life categorical data with more than two categories. Chen et al.107 also provide some
support for the idea that normal methods do not work well for ordinal data. Our anal-
ysis of the pubertal data showed that FCS appears to be less sensitive to such biases.
We therefore recommend that continuous data are imputed as continuous and discrete
data are imputed as discrete. Conditional specification is the most convenient way to do
that. Despite its theoretical weaknesses, we conclude that FCS is a useful and flexible
alternative to JM when the joint distribution of the data is not easily specified.
Missing data problems require careful consideration and thought. It will be clear by

now thatMI is not an automatic technical fix for the missing data. Rather, it is a general
and principled strategy for attacking missing data problems. The process of specifying
the imputationmodel is a scientificmodeling activity on its own, that comeswith its own
model building principles. The fact that highly automated and sophisticated procedures
are available does not free the imputer or the analyst from the responsibility to consider
the appropriateness of the assumptions underlying the imputationmodel for the problem
at hand. The implication is that medical researchers should include a short description
of their missing data method into their scientific articles. The most natural location for
that description is the section on the statistical analysis.
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