PSYCHOMETRIKA—VOL. 62, NO. 2, 215-236
JUNE 1997

FITTING ARMA TIME SERIES BY STRUCTURAL EQUATION MODELS
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This paper outlines how the stationary ARMA(p, ¢) model can be specified as a structural
equations model. Maximum likelihood estimates for the parameters in the ARMA model can be
obtained by software for fitting structural equation models. For pure AR and mixed ARMA
models, these estimates are approximately unbiased, while the efficiency is as good as those of
specialized recursive estimators. The reported standard errors are generally found to be valid.
Depending on sample size, estimates for pure MA models are biased 5-10% and considerably less
efficient. Some assets of the method are that ARMA model parameters can be estimated when only
autocovariances are known, that model constraints can be incorporated, and that the fit between
observed and modelled covariances can be tested by statistical methods. The method is applied to
problems that involve the evaluation of pregnancy as a function of perceived bodily changes, the
effect of policy interventions in crime prevention, and the influence of weather conditions on
absence from work.

Key words: lagged variables, Box-Jenkins model, covariance structures, PROC CALIS, interven-
tion analysis, autocorrelation.

1. Introduction

The structural equation model is a general and flexible scheme for specifying linear
relations among observed and unobserved variables. The model subsumes many common
linear models as a special case. Other names that refer to the same class of models are
dynamic simultaneous equations models, reticular action models (RAM), latent variable
models, path models, and covariance structure models. Software for fitting structural
models include LISREL (Joreskog & Sorbom, 1985), EQS (Bentler, 1989), COSAN
(Fraser & McDonald, 1988) and SAS® PROC CALIS (SAS Institute, 1990).

This paper investigates how the stationary ARMA model of Box and Jenkins (1976)
can be formulated and fitted as a structural equations model. The ARMA model provides
a parsimonious and elegant way to describe univariate time series. The model has been
successfully applied to time series in many branches of science. Writing an ARMA model
as a structural model is useful because this opens up the possibility to extend the univariate
ARMA model to, for example, ARMA models that incorporate contemporaneous rela-
tions, or to constrained ARMA models. A convenient feature of the approach is that solutions
can be fitted by widely available software for cross-sectional data. In addition, a practical
advantage is that access to the raw data is not needed because parameters can be estimated as
long as the right autocovariances are known. Proper understanding of ARMA modeling
may aid in generalizing covariance structure models to the case of correlated observations.

Box and Jenkins have shown how the ARMA model produces particular patterns in
the covariances among lagged variables. The purpose of this paper is to describe the lagged
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covariance matrix by a structural model. An early attempt to do this is Cattell’s P-tech-
nique (Cattell, 1963). Molenaar (1985) improved upon P-technique by considering a latent
factor model that can be fitted with LISREL. Other work in this area has been done by
Hagnell (1992), who analyzes a multiple economic series by four different lagged variable
LISREL models, and Molenaar, de Gooijer, and Schmitz (1992), who formulate a non-
stationary dynamic factor model with time dependent factor structure as a LISREL prob-
lem. The paper by Wood and Brown (1994) summarizes this line of research and contains
in-depth simulations of some of these techniques.

Time series models can also be integrated into structural models via the state space
model. See for example the paper by Jones (1991) for a comprehensive overview of the
relations between these approaches. More specifically, MacCallum and Ashby (1986) and
Oud, van den Bercken, and Essers (1990) have shown how the state space model can be
written as a LISREL model. Since ARMA models can be written as state space models,
they are indirectly also LISREL models. A disadvantage of this parametrization is that it
leads to large, sparse parameter matrices that grow with the number of time points.

Guttman (1954) was the first to realize that the covariance matrix of many psycho-
logical tests taken in time forms a simplex, where measures closer in time correlate higher
than measures more distant in time. Anderson (1960) pointed out the relation between
Guttman’s simplex and the autoregressive model. More recent work on correlation pat-
terns include the papers by Mukherjee and Maita (1988), who show how many popular
dynamic models in psychology can be translated into structured covariance matrices, and
Browne (1992), who extends simplex theory to negative correlations.

For panel data, covariance modelling of time dependent data by autoregressive mod-
els is well established (e.g., Cook & Campbell, 1979; Joreskog, 1978, 1979; McArdle &
Aber, 1990). Many modeling issues and path models for panel data are similar to those
found in time series analysis, so this literature contains a wealth of useful knowledge.
However, the covariance matrix arising from the panel design differs in a fundamental way
from the lagged covariance matrix. The covariance matrix of panel data quantifies the
variation between sample elements. In contrast, the covariance matrix of time series
represents the variation between time points, possibly sampled from one single subject or
process only.

The present paper relies on the extensive use of lagged variables, both observed and
latent, to capture time dependent aspects in the data. Viewed in this way, time series
analysis is just another form of multivariate analysis. A similar approach was taken in van
Buuren (1990, 1992). No systematic accounts seems to exist in which the specification of
the univariate Box-Jenkins model as a structural equation model is the primary objective.
This paper is intended to fill this gap. It concentrates on the univariate case and establishes
links with Box-Jenkins theory. On a conceptual level, the use of error variables as latent
components leads to very compact models. The ARMA model can be portrayed as a path
diagram. Furthermore, the quality of the estimates will be investigated. The method is
illustrated by applying it to real time series.

2. Method

Let v, denote a realization of a time series v at time ¢. The backshift operator B is
defined such that v,_; = By and that v,_; = B'y. If B is applied to the observations of
all time pointsz = 1, ..., T, the resulting scores can be stored as the j-th lagged variable.
The covariance matrix of lagged variables is called the lagged covariance matrix. ARMA
models possess known theoretical covariance structures. Using lagged variables, software

for structural equations can be used to fit such patterns to time series.
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Let f, denote values generated by an independent white noise process with variance
o?. The ARMA(p, q) model is defined by

v =¢v,_ + -+ d)pvt—p +ft - 6lft—l - eqft——q, (1)

where the ¢’s and &’s are unknown parameters. This paper is restricted to stationary and
invertible ARMA(p, q) processes where all roots of the characteristic equations 1 —
¢B—-— ¢,B” =0and 1 — ;B — -+ — 6,B7 = 0 lie outside the unit circle.

Suppose that nis anm X 1 random vector of dependent variables and that §is ann X
1 random vector of independent variables, then the Bentler-Weeks structural model is
defined by (Bentler & Weeks, 1980)

n = Bon + v¢, (2)

where By (m X m) and y (m X n) are parameter matrices. Let ® denote the covariance
matrix of £ which contains elements that are either free, constrained or fixed. Let G be a
known matrix that selects observed variables from 7 and £ The covariance structure of the
observed variables under model (2) can be represented as

3 = G(I - B,) " 'T®T'(I — By)' ~'G", 3)

where By and I" are specified as

(5 -2

See Bentler and Weeks (1980) for exact definitions of these matrices and their precise
roles in the structural equations model (2).

Let the T X 1 vector v contain the time series to be analyzed, and that v, is the p-th
lagged variable of vy. The ARMA(p, 0) can be expressed as a single equation in the
Bentler-Weeks model as '

U1
U0=’Y§=(¢1,---,¢,,,1)1; . (4)
i4
fo
The variance-covariance matrix of ¢ in the model is
To T ot T 0
71 TO e Tp—2 O
Ll .
Tp-1 Tp-2 "'° To 0
0 0 -+ 0 o2

where 7; denotes the i-th order autocovariance in the ARMA(p, 0) model and where o?
is the variance of the noise process f. The 7-parameters are not free and depend on ¥.
This relation is nonlinear and cannot be easily incorporated into the structural model.
Therefore 7; is estimated directly from the raw data. One of the reviewers remarked that
this might cause loss of efficiency in analyzing real data as opposed to simulated data. For
~ p = 1, by substituting (4) and (5) into (3) yields 7y = o*/(1 — $3), which is identical to
the known theoretical variance of the AR(1)-model. Because Box and Jenkins express
variances of higher order AR-models in terms of infinite MA-models, the variance struc-
ture of (3) for p > 1 cannot be directly related to their results.
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FIGURE 1.
Path diagrams of the ARMA(1, 0) model (a) and the ARMA(2, 0) model (b).

Figure 1 depicts the path diagrams for p = 1 and p = 2 in RAM nomography (see
McArdle & Aber, 1990, pp. 165-167). Slings (two-head arrows) associated with the vari-
ances and covariances of manifest exogenous variables are not drawn. These (co)variances
are automatically fixed to their sample values and consequently not very interesting. Since
the corresponding slings divert attention from the core model, they are omitted. One could
consider drawing an arrow in the AR(2) model between v, and v,_, restrict the corre-
sponding path coefficient ¢;(v;—7, v,—1) to ¢1(v,—1, v), and add an error term to v,_;.
Apart from introducing extra complexities into the model, this will lead to the wrong
answer because ¢q(v,—,, v,—1) is estimated without taking the influence of the second
predictor, in this case v,_3, into account. The equality constraint will somehow pool
¢1(v-2, v—1) and ¢1(v—1, v), which produces bias in ¢;.

The pure moving averages ARMA(0, g) model can be specified as a structural equa-
tion model as follows:
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FIGURE 2.

Path diagrams of the ARMA(0, 1) model (a) and the ARMA(0, 2) model (b).

UO 1 .._01 “ e _eq fo
(%1 1 _9] _0 fl
| =vE= Lo aE (6)
g 1 -6, - -6,/ \fa

a form that also appears in dynamic factor analysis (Molenaar, 1985). The variance-
covariance matrix of £ is equal to ® = diag(d?, . .., ¢?) of order 2g X 2gq. The effect of
requiring orthogonality of the f’s in this model is that these become serially uncorrelated
processes (Geweke & Singleton, 1981). The variances of fy, . . . , f,, are unknown, but since
they represent different lags of the same random process f, their estimates are constrained
to be equal. '

Figure 2 contains path diagrams for ¢ = 1 and ¢ = 2. Note that the same basic
MA(g)-model is repeated g + 1 times, thus yielding a chained equation structure. Because
it is impossible to estimate all parameters from the basic model only, lagging the entire
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model is necessary to increase the degrees of freedom. It is known that the ARMA(0, q)
process only up to g lags of vy have nonzero autocovariances, so properly estimating its
parameters requires that ¢ + 1 lagged models are to be chained. The theoretical variance
of vy by (3) is equal to 7y = 1+ 6+ -+ 0,3), which is identical to the result given
in Box and Jenkins. : '

Provided that g < p, the general ARMA(p, g) model with p, g > 0 can be written
as a special case in the Bentler-Weeks framework as 1 = B¢n + & where

Uq.+1 -0 d)l e ¢q—1 ¢q
Yo : 0 ¢ e ¢q -
n=| "] e=|" | b= R ™
2 z oo
fau 0
by 41 ¢, O 0 1 -6, -0,
¢, ¢, O 0 1 -6 -0,
Y= . K B . . . . .
¢1 ¢q e e ¢p O 0 1 _01 _eq
Note that in addition to vy, variables vy, ..., v, are endogenous variables, so they

should be arranged in the n-component of the Bentler-Weeks model. Writing the model
for the case g = p is quite simple, but it differs only marginally from (7) in the division of
v’s over m and £ which is of little further theoretical interest so this equation is not given.

The upper-left block of ® contains p process autocovariances, while the lower-right
block holds the variances of the 2q + 1 latent shock factors fy, . . . , fo5. The matrix is equal
to

T Tt T, Vig ottt Vg1

Tp-1 To Vs

0,2
® = 3 . (8)
0.2
vl,l . 0’2
.o 0.2
Vg1 Vs

In some models, v’s and the f’s are correlated by definition, so their covariances
should be included into the model. The parameters are represented by v, 1, . . ., v, With
s = min (p, q). The precise inclusion rule is as follows: Suppose that j is bounded by g +
1 =j < 2g and that i is bounded by ¢ + 1 < i < min (p + g, j), then o(v; f;), the
covariance between v; and f;, should be included as a free parameter. For example, in an
ARMAC(1, 1) or an ARMA(2, 1) model v; ; = o(vy, f,) must be free, in an ARMA(, 2)
model vy ; = o(v3, f3) and ¥(2, 1) = o(v3, f4) are free, and in an ARMA(2, 2) model
v11 = 0(vs, f3), vo,1 = 0(v3,f4) and v, , = 0(vy, f4) are free parameters. It is also possible
that the v-block is empty. ,

Figure 3a contains the ARMAC(], 1) path model. Note the inclusion of the bidirec-
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FIGURE 3.
Path diagrams of the ARMAC(1, 1) model. Covariance method (a), Noise method (b).

tional arrow to account for o(v,, f,). One of the reviewers suggested to repeat the pattern
of moving average coefficients and add an error term to each v; that has less than g + 1
arrows pointing at it. This has the advantage of giving extra degrees of freedom. This is
called the ‘noise method’, while model (8) is identified as the “covariance method”. Figure
3b illustrates the idea.

In their general forms, (7) and (8) may appear complicated. However, in most popular
cases the actual specifications in terms of program code are quite compact. The appendix
contains PROC CALIS code for fitting all ARMA models with p + ¢ < 2. Note that this
code relies on the fact that PROC CALIS automatically sets the predicted (co)variances
of the exogenous manifest variables equal to the sample quantities and adjusts the degrees
of freedom accordingly. Translation of the code into other software packages typically
requires the addition of explicit modelling statements with respect to these variances.

3. Simulation

If the ARMA model can written as a structural model it can also be fitted to time
series by LISREL, EQS, COSAN, PROC CALIS or other general purpose structural
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equations software. It is interesting to study how well the resulting estimates compare to
those derived by specialized recursive estimation methods that have been developed for
ARMA models. This section contains the results of a small simulation study investigating
a variety of models.

The SAS/IML® function ARMASIM was used to generate 100 simulated time series
of T = 500 time points, each for a known ARMA(p, q) model. Parameters are estimated
by PROC CALIS (SAS, 1990) and by SPSS® ARIMA (SPSS, 1990), the latter of which
implements Mélard’s method (Mélard, 1984), a fast and specialized recursive estimation
method for ML estimation of ARMA parameters. This analysis was repeated under 10
different ARMA models. The difference between the replication mean and the a priori
value is the approximate bias of the estimator. The standard deviation around the mean is
a measure of efficiency. PROC CALIS estimates were obtained by the method of maxi-
mum likelihood. After some experimentation the Levenberg-Marquart optimization
method turned out to be best suited for this problem.

Table 1 contains the results of the simulation. Ten different ARMA models are.
investigated: two AR(1), two AR(2), two MA(1), two MA(2), and two mixed ARMAC(1, 1)
models. The order of the models is identified in the columns labeled p and g respectively.
A column labeled “PAR?” identifies the unknown parameters under each model, a column
labeled “POP” contains a priori values. Next, the average (X) and its standard deviation
(o(X)) are given for both CALIS and ARIMA.

Table 1 shows that for pure autoregressive and for mixed models there are not many
differences in terms of bias and efficiency between both methods, that is, both CALIS and
ARIMA yield virtually unbiased estimates of comparable precision. For pure MA models,
ARIMA is unbiased and precise, but the CALIS estimates are slightly off-target and
deviate up to 5% from the true value. This is especially visible in the MA(2) models. As
outlined in section 2, two structural representations can be used for the ARMA(1, 1)-
model. The table reports the results for the noise method. The covariance method pro-
duces almost identical estimates, but minimization by the noise method generally proceeds
somewhat smoother and is more reliable.

Especially for pure MA-models, convergence is sometimes problematic. The worst
case is the model with 6; = 1.20 and 6, = —0.80. In this case, mild and severe convergence
problems show up in about 10 to 20 percent of the runs. Typical symptoms are boundary
estimates (mild), negative variance estimates (severe) and huge standard errors (severe).
MA-models appear to be rather difficult to estimate anyway. Even Mélard’s algorithm goes
astray quite a few times in both MA(1) and MA(2) problems. In practice, one could try
alleviate such problems by specifying different starting values or by selecting alternative
minimization procedures, but it will not cure the patient. Here is clearly room for im-
provement.

A series length of 500 may give an idea of the asymptotic behavior of the estimator,
but does not often occur in practice. Therefore the simulations were repeated with a more
realistic value of T = 50. The results are given in Table 2. Of course, standard errors
increase, but the overall pattern is similar to that in Table 1. So, for T = 50 estimates are
on the average quite reasonable, though not as good as Mélard’s method.

The means of the parameter estimates do not tell whether one could reasonably
expect both methods to give identical result for a given set of data. The last column in
Table 2 contains the correlations between CALIS and ARIMA estimates, as computed
from the same data. The results for pure AR models are encouraging. Correlations vary
between 0.77 and 0.99. However, correlations for the pure MA models are practically zero.
This means that, though the estimates are on the average correct, the values for a partic-
ular data set may be very different. Thus, CALIS estimates for pure MA models are
unreliable. For mixed models, the situation is much more favorable.
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TABLE 1

averaged estimates and standard error of this average are given.

CALIS

p q PAR POP X o)
1 0 ¢, .80 .80 .03
o> 100 1.00 .06

6, -80 -80 .02

o> 100 1.00 .06

2 0 6, .80 80 .04
o, -20 -20 .05

o 1.00 1.00 .06

6, 120 1.19 .02

o, -.80 279 .02

o 1.00 1.01 .07

0 1 0, 80 .82 .15
G 100 98 .14

0, -80 -80 .16

o®  1.00 99 .15

0 2 8, .80 83 .10
8, -20 .20 .10

1.00 96 .09

0, 120 124 .14

8, -.80 -76 .19

6> 100 97 .14

1 1 ¢, .80 79 .04
e, 20 19 .07

o> 100 1.00 .07

o, .80 79 .03

6, -20 -20 .05

o> 100 99 .07

ARIMA
X oX)
80 .03
1.00 .06
=79 .02
1.00 .06
80 .04
-20 .05
1.00 .06
.19 .02
-79 .02
99 .06

. .80 .03
1.00 .07
-80 .03
1.00 .07
80 .05
-21 .05
1.00 .06
120 .03
-80 .03
1.00 .06
79 .04
19 .07
1.00 .07
19 .03
-20 .05
99 .07

223
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TABLE 2

- Simulation results (100 replications) of fitting 10 ARMA(p,q) models by SAS PROC
CALIS and by SPSS* ARIMA (T=50). For each method, averaged estimates, se of
this average, and averaged estimates of the standard errors are given ('na’ means 'not
available'). The column labeled 'r' gives the correlation between CALIS and ARIMA
estimates.

CALIS ARIMA

p g PAR POP X 06X o X oX) oix r
1 0 o, .80 76 .08 .10 79 07 .09 a7
¢® 1.00 1.03 22 .20 102 22 m 97

o, -80 -77 .09 .09 -76 .09 .09 97

¢ 100 1.03 21 .20 102 21 ma 97

2 0 6, .80 79 13 .14 80 .12 .14 97
o, -20 223 13 .14 222 13 .14 98

1.00 99 22 .20 102 22 m 99

¢, 120 1.17 .09 .09 1.19 .08 .09 87

o, -80 77 .09 .09 -78 .09 .09 .89

¢’ 1.00 .10 22 .27 102 22 m 82

0 1 0, .80 73 24 32 81 .10 .11 .00
¢ 100 1.07 30 .33 102 22 m 70

0, -80 71 25 28 -83 .09 .09 -.07

o> 100 105 30 30 - 102 21 m .69

0 2 0, .80 87 21 .25 80 .13 .14 66
6, -20 -22 22 .29 -22 18 .14 .58

1.00 89 22 .24 102 22 m 81

8, 120 134 26 9.11 121 11 .11 21

8, -80 .79 .26 12.94 -83 .12 .11 .16

o> 1.00 85 23 1237 100 22 m .59

1 1 o, .80 70 .18 .16 s 15 .13 78
6, .20 A2 21 .23 15 22 .20 85

¢ 100 99 21 .14 102 22 m 97

¢, .80 a1 .14 .10 77 .10 .10 68

0, -20 229 21 .23 .24 .18 .16 62

6’ 100 1.00 23 .17 103 22 m 89
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Time series observations are not independent. An important question therefore is
whether the standard errors that are reported by CALIS can be used for significance
testing. The answer is yes. Two extra columns, labeled o(x), in Table 2 contain the
standard errors as reported by CALIS and ARIMA, averaged over the replications. Ac-
tually, the median instead of the mean is reported since this measure is more robust to
occasional outliers. The reported standard errors are OK if o(x) is equal to o(%). If o(x)
< o(X) the reported standard errors underestimate the true standard error, and therefore
give p-values that are too small. This happens only slightly in the ARMA(1,1) model, for
both CALIS and ARIMA, and sometimes for the o” estimates in other models. The latter
parameters are hardly ever tested though. Apart from the troublesome MA(2) problem,
estimates are generally quite close, and if they deviate then o(x) > o(X). Thus if CALIS
standard errors are used for significance testing or for constructing confidence intervals,
results are reasonably accurate. Also, if bias occurs it is likely to be into the conservative
direction.

In summary, CALIS estimates are approximately asymptotically unbiased but in some
cases more efficient estimators exist. Standard errors reported by CALIS can be used for
parameter testing or for constructing confidence intervals. Convergence problems may
show up, especially in pure MA models. CALIS and ARIMA estimates can be quite
dissimilar for pure MA models. Therefore, CALIS should not be used for fitting these
models. Except for pure MA models, the result lend credit to the notion that fitting ARMA
models within the Bentler-Weeks framework produces results that will not be too far off
the mark.

4. Examples

Bivariate Autoregressive Model with Contemporaneous Relations

This example illustrates (a) how structural modeling helps to formulate multivariate
ARMA models that incorporate both simultaneous and lagged relations, and (b) how
constraints can be used to test for Granger causality.

Schmitz (1990) has written a fine introduction into many aspects of multivariate time
series analysis. To illustrate his methods, Schmitz analyzes the relationship between two
time series from the field of developmental psychology, the evaluation of pregnancy (p)
and the rating of bodily changes (b), by a multivariate ARMA model. The basic data
consist of two daily measurements on 82 points of time and were obtained by reading off
the scores from Schmitz’s figure. The correlation between p and b is 0.63.

Using the auto-correlation function (ACF) and the partial autocorrelation function
(PACF), Schmitz identified the bivariate AR(1) model

P _[dun b\ [(Pi-a €,

(b) - (d’zx ¢22>(br—1> * (Sb)’ ©)
where the ¢’s are unknown parameters, and where &, and €, are white noise processes with
variances 012, and o7 and with covariance 0pp- A column in Table 3 labeled “Al1” contains
the PROC CALIS estimates for this model. The estimates differ from those given in
Schmitz (1990) as Schmitz reports standardized coefficients while Table 3 gives the raw
estimates.

Since ¢, is only just significantly different from zero at a = 0.05, the relation between
D:—1 and b, is weak. If the relation actually exist, then it is an instance of Granger causality
(Granger, 1969). Loosely speaking, a predictor is Granger causal if it precedes the depen-
dent variable in time and if it has an independent contribution to the prediction. Granger

causality can be formally tested by restricting the corresponding coefficient(s) to zero, and
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TABLE 3

Maximum likelihood estimates for six models applied to a bivariate time series
from Schmitz (1990) (standard errors are in parentheses).

Parameter Al A2 Bl B2 C1 C2
B, - - 47(11)  .50(.10) ) )
o, 43(11)  35(.10) 35(.10)  .38(.09) 43(11)  .60(.09)
Oz 30(12)  .36(.12) .08(.13) - 30(.13) .
B, . - - - 37(09)  .38(.08)
o, 18(.10) - 18(.10) - 02(.10) -
®,, 48(11)  .61(.09) 48(11)  .61(.09) 37(11)  .38(.09)
c,’ 13(.02)  .13(.02) 11(02)  .11(.02) 13(.02)  .14(.02)
o, 10(.02)  .11(.02) 10(.02)  .11(.02) 09(.01)  .09(.01)
G, .04(.01)  .05(.01) - - i i
P, 41 41 51 51 41 36
P, 40 37 40 38 50 50
DW, 2.21 221 2.15 2.22 2.21 232
DW, 2.07 2.07 2.07 2.07 2.00 2.02
x: 0 3.15 0 352 0 5.62
d.f 0 1 0 2 0 2
p - .08 - 17 - 06

test the constrained against the unconstrained model. Model A2 is a constrained version
of Al in which ¢,; = 0. The difference in y*-statistic, which summarizes the difference
between the observed and predicted lagged covariance matrices, is x5 = 3.15 with d.f. =
1 (p = 0.08). Models Al and A2 are not significantly different at @ = 0.05, implying that
the contribution of p,_, in predicting b, is nonsignificant so the relation between p,_; to
b, is not Granger causal. Figure 4a gives the path diagram of Model A2.

Note that the Durbin-Watson (DW) statistic for A1 and A2 is close to 2, indicating
that the residuals have an insignificant first-order autocorrelation. Note also that models
Al and A2 allow for correlated residuals. In fact, the residual correlation r(s,, &) =
0,5/ 0,03 = 0.42is substantial. So, while the structural part of model A2 explains the major
time dependent relationships in the data, there is still a lot of contemporaneous informa-
tion left unaccounted for in the residuals.

It is attractive to develop a model that not only explains serial dependency, but also
contemporaneous relationships, if any. To do so, an additional contemporaneous model is
fitted, just like in a conventional covariance structure model. Model B1 extends (9) by
including b, as a predictor for p, so that p, = Byb, + é11p;—1 + d12b,-1 + &, and by
restricting a,, = 0. Since ¢, and ¢, are no longer significant, a second, constrained
solution (B2) was computed in which these coefficients were set to zero. Figure 4b contains
the corresponding path diagram. There are some remarkable differences between A2 and



STEF VAN BUUREN 227

.35
pt—1 - pt
.36
b > b
LI -3 t
(a)
.38 1
Pt.1 > Py '11
\
.50
b > b 11
t-1 61 t ] D
(b) |
.60 1
pt_1 > pt .14
.38
b > b .09
t-1 38 t ] D
(c)
FIGURE 4.

Path diagrams for three different models applied to a bivariate time series: evaluation of pregnancy (p) and rating
of bodily changes (b) (Source: Schmitz, 1990). Model (a) is the multivariate ARMA model identified by Schmitz.
Models (b) and (c) allow for contemporaneous relations between p and b.

B2. The most important one is that model A2 only explains time dependencies, while
model B2 takes account of all time- and cross-relationships. Also, B2 fits the data better,
uses less parameters, and has larger froportions of explained variance (compare the
squared multiple correlations pg and p}).

Models C1 and C2 “reverse the arrow” between p, and b,. Models C2 also fits the
observed cross-autocovariance matrix, but not as well as B2. The Durbin-Watson statistic
for this model increases to 2.32, which falls into the inconclusive region of the Savin-White
tables, so C2 may not adequately deal with time dependencies.
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FIGURE 5.
Hyde Park Purse Snatchings Series. The prevention plan starts at time point 42.

Summarizing, PROC CALIS was used to mix cross-sectional and time series models.
Also, constraints were applied where this was necessary or useful. Based on the data alone,
the preferred model is B2.

Intervention Analysis

A common goal in time series analysis is to determine whether some external event
influences the level or shape of a series. Typical examples come from N = 1 research
designs in clinical psychology. Here the question is whether a therapeutic treatment has an
effect on the client. The main worry in intervention analysis is serial dependency of the
series. Serial dependency invalidates the ¢-test for testing the difference between the
pre-intervention mean and the post-intervention mean. As a solution, one may fit an
ARMA model to the series, derive the residual, and apply the ¢-test to it. The classic
reference for such procedures in the behavioral sciences is Glass, Willson, and Gottman
(1975).

The Hyde Park Purse Snatching series (MacCleary & Hay, 1980) consists of 71 counts
of purse snatchings in Hyde Park, Chicago during the period of January 1969 to September
1973. The series is plotted in Figure 5. At time point 42 Operation Whistlestop started, a
community crime prevention program. Amongst others, the project involved distributing
whistles to citizens which could be used to alarm the police. Figure 5 shows that after the
intervention point the number of purse snatchings decreases, so the intervention seems to
have a desirable effect. Indeed, the ¢-test is statistically significant with p < 0.001. The
significance of this five-star result is debatable however, since it is hard to maintain that the
observations are independent. The first 10 autocorrelation are .50, .54, .37, .30, .27, .16, .25,
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Path diagram of an intervention model of abrupt, constant change under an ARMA(Z2, 0) model.

.19, .19 and .26, which is typical for an autoregressive process. In fact, MacCleary and Hay
identified an ARMA(2, 0) model for the series.

PROC CALIS was used to estimate an intervention effect of abrupt, constant change
under three autoregressive noise models with respectively p = 0, 1, 2. This was done by
dummy coding the intervention variable / and estimate its effect on the mean of the series.
The associated intervention parameter & can then be tested for significance. The path
diagram for the model p = 2 is given in Figure 6. Table 4 contains the parameter estimates
with their standard errors and the values of the Durbin-Watson and the Ljung-Box-Pierce
(LBP) statistics.

The first row of Table 4 is the analysis without the noise model. After the intervention
about six purse snatchings less per month are counted than before. However, both DW and
LBP-statistics indicate that the data contain considerable autocorrelation, so the estimated
standard error for 8 is suspect. When the first and second lags of the series are included,
the LBP-statistic drops dramatically, and the DW-statistic approaches the neutral value of
2. But simultaneously 8 declines. So the more lags are included, the less effect we see. In
this example, controlling for autocorrelation by the ARMA(2,0) model annihilates the
intervention effect. Using other estimation methods, similar results were found by Mac-
Cleary and Hay (1980) and van Buuren (1990).

Optimal Prediction Lags By Sliding

Smulders and van Deursen (1995) study the influence of the weather on absenteeism
from work. Thirteen daily weather measurements during the year 1990 were obtained from
the Royal Netherlands Meteorological Institute (KNMI). Two measures of absence are
used: absence incidence, which is equal to the percentage of new spells on a given day, and
absence prevalence, which is the total absence percentage for a given day. Absence data
were obtained from personnel records of ten organizations that were located within a
distance of 40 kilometers from the weather station.



230 PSYCHOMETRIKA

TABLE 4

Intervention estimates (8) and ¢-estimates under three noise models for the
Hyde Park Purse Snatching series (T=71) (DW = Durbin-Watson statistic, LBP
= Ljung-Box-Pierce statistic (25 df)).

Noise Model o(se) ¢,(se) ¢,(se) DW P LBP p
None -6.2(1.69) 1.22 <01 852 .00
ARMA(1,0) -3.7(1.69) .40(.11) 230 <10 35,5 .08
ARMA(2,0) -2.7(1.60) .26(.11) .36(.11) 2.00 >.10 24.1 .55

Using linear regression with lagged predictors, Smulders and van Deursen were able
to show slight effects of weather on both prevalence and incidence. The analysis below uses
- correction terms like weekly patterns and holiday periods that are modeled as an integral
part of the regression model, which enhances the efficiency of the analysis. A structural
time series model is fitted that expresses today’s prevalence as a function of yesterday’s
prevalence and today’s incidence. This model prewhitens the absence data so that any
cross-lag effects are not determined by the autocorrelation in the individual absence series.
A latent weather variable is constructed as a linear combination of observed weather
indicators. The effect of weather on absence prevalence can be either direct or being
routed via the incidence. To test for the optimal lag, the latent weather variable is ‘slided
along’ the absence model, that is, tried at different lags. By comparing the estimates at
different lags, this procedure suggests the optimal delay at which the weather is effective.
Absence incidence turns out to be related to (a) day of the week (coded as six dummy
variables using Sunday as the reference), (b) whether or not it is a holiday period, and (c)
yesterday’s incidence. Absence prevalence largely depends on (i) day of the week, (ii)
yesterday’s prevalence, and (iii) today’s incidence. Using linear regression, no noticeable
autocorrelation remained in either of the residuals (the DW-statistics are close to 2). For
example, the first-order autocorrelation of the residual of prevalence drops from 0.94 (if
only a constant term were included) to 0.02 for the autoregressive model given above. Both
regression models are combined into one path model, which now contains two coupled
autoregressive models, each of order one. The modification indices for this model sug-
gested that a separate correction for Saturday was unnecessary, so Saturdays and Sundays
will be further treated as equivalent. Figure 7 contains the resulting diagram.

The model of Figure 7 fits the lagged-autocovariance model very well (e.g. Goodness
of Fit Index (Adjusted) = 0.96, Bentler & Bonnett’s NFI = 0.99, Bollen’s A* = 0.99).

As a next step, weather measures are added to the absence model. Smulders and van
Deursen used factor analysis to identify four primary weather indicators: mean daily
temperature, mean wind velocity, hours of precipitation and percentage of sunshine. For
each indicator, six lagged variables were constructed. The total window size of the analyses
is arbitrarily chosen to cover one week.

CALIS was applied to make a optimal linear combination of all four indicators at
every lagd ford = 0, ..., 6. Figure 8 contains that the path diagram of this analysis. The
diagram represents a range of path models, each of which corresponds to a different delay.

, To avoid clutter, errors e; and e, are deleted from the picture. The most interesting part
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FIGURE 7.
Model for incidence (I) and prevalence (P) of employee absenteeism, including a ‘day of week’ correction (* =
1.06, 0.50, 0.49, 0.46, 0.33; ** = —1.12, —0.28, —0.24, —0.23, ~0.11 for Mon, Tue, Wed, Thu, Fri respectively).

of the model is to the influence of weather on absence as measures by a; and 8;. Ac-
cording to the model, the effect of weather on prevalence can be either direct or through
the incidence.

Figure 9 contains estimates of «,; and B, for different values of d. Some of these
analyses required as much as 150 maximum likelihood iterations. The sample size (n =
365 — d) is sufficiently large to compare these values to standard normal probabilities. It
appears that the largest effect of weather on incidence occurs after zero (ag = —0.36),
three (a3 = —0.35) and four days (a4 = —0.34). The mean daily temperature usually was
the predominant factor in the latent weather indicator. Since the average incidence for
males is about 0.5%, the model implies that, if everything else is held constant, an increase
in mean temperature of 10 degrees Celsius lowers the incidence after three days with
0.035%. The 90% confidence intervals that are drawn indicate that this three-day effect is
just significant at a P-level of 0.10. Despite this, the evidence is inconclusive with respect
to the question which lag influences absence most, especially after correcting for multiple
testing. It is fair to conclude that weather does affect the absence incidence after some
days, but also that the effect is rather small.

5. Discussion

For pure AR and mixed ARMA models, covariance structure estimates are approx-
imately unbiased and almost as efficient as those provided by a true ARMA algorithm. For
pure MA models, parameter estimates are biased up to 5-10%, and considerably less
efficient. In the latter case, the correspondence with standard methods is poor. It is wise
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Sliding across time to find the optimal delay between weather conditions and absence. The sliding factor d ranges
from 0 (instantaneous weather effect) to 6 days.

not to use CALIS for estimating the parameters of pure MA models CALIS standard
errors are often quite reasonable. Of course, if the primary goal is to fir - iivariate ARMA
models, conventional methods could best be applied. However, the structural model adds
substantial flexibility and offers a large choice of models, some of which are quite useful in
time series analysis.

One of the critical assumptions in covariance structure analysis is independence of
observations. The analogous criterion in time series analysis is that model residuals must
conform to white noise. The use of this criterion was stressed by Ghaddar and Tong (1981).
Checking for white noise is certainly not common practice however. This state of affairs
can, at least partly, be attributed to the fact that no adequate strategy for dealing with serial
correlation in covariances structure models has been developed yet. Integrating lagged
variables into the structural component provides one solution to the problem of autode-
pendence. Properly chosen lagged variables takes away autocorrelation from the residuals
and puts it where it belongs, that is, into the structural model.

Many different modelling strategies exist in time series analysis, some of which are
fiercely defended. Because modelling is part of every analysis, it is a great opportunity for
debate. Cook and Campbell (1979, chap. 7) distinguish eight different strategies for ana-
lyzing concomitancies in time series and discuss their pros and cons. No single method is
optimal. A modelling strategy that is often quite useful is to start with a clear research
question and a plausible minimal path specification of the process of interest. Preferably,
there is an outcome measure, a causal factor of interest, and some covariates that have to
be accounted for when assessing the relation between the cause and the effect. Either type
of variable could possibly be measured by multiple indicators. For ample data, split the
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Regression estimates plus 90% confidence interval for the influence of weather on absenteeism incidence (a) and
prevalence (b) as a function of the number of the days passed since the weather.

data into two sets, one for fitting and one for validation. Subsequently, fit the minimal
model without the effect of interest and test each residual on the lack of autocorrelation.
Eliminate trend and seasonality in the series by incorporating polynomial and modulating
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functions of time as covariates. If an autocorrelated residual is detected, try adding an
additional lagged variable for predicting the outcome. This can be either a lag of (a) the
outcome variable itself, (b) the residual error variable, and (c) another observed or latent
variable. Some authors restrict to options (a) and (b), which leads to prewhitening by
ARMA models. Working this way along all autocorrelated residuals, try to capture all
serial dependency into the path model. Avoid correlated residuals as far as possible.
Introduce the main effect of the study and estimate its magnitude and standard error.
Compute how well the model fits the observed covariance matrix as compared to the one
without the causal relation. If a validation set is available, fix the free parameters to the
model estimates and report how well the model fits the covariance matrix of the validation
data.

Provided that one stays within the class of ARMA models, it is useful to transfer and
adapt the Box-Jenkins identification methodology to covariance structures. It would surely
help if the software could produce plots of the autocorrelation function and the partial
autocorrelation function, and compute Durbin-Watson or the Ljung-Box-Pierce statistics.

The user should also be aware of the problem of choosing the window size of the
covariance matrix. Molenaar (1985) remarks that it is not possible to compare models that
are based on different sizes of the covariance matrix. It therefore makes sense to fix the
number of included lags to accommodate to the most complex model one would like to try,
and chain the basic model accordingly. If p., and g, are the orders for the most
complex model, the maximum number of lagged covariances can be chosen simply as p .«
+ Gmax- Current experience is that this hardly affects the estimates, but more work is
needed to verify this in more general cases. One of the reviewers expected that the
standard errors are affected. _

Some work on minimization algorithms seems to be called for, especially on those for
solving pure MA models. One could experiment with different minimization methods
within PROC CALIS or use other programs like EQS and LISREL. It may even turn out
worthwhile to implement a recursive estimator for solving MA-type of problems, though
properly integrating it into an existing package probably requires a major effort. Also, it
seems to be sensible to apply a Toeplitz transformation so as to stabilize and symmetrize
the input covariance matrix. Wood and Brown (1994) published a SAS® macro that
implements such a transform.

The method can be extended in a number of ways, for example by fitting an ARMA
model to a latent component instead of to the observed data. Suppose that a latent variable
follows an AR(1) process, then the structural model is closely related to a state space
model. Alternatively, if the latent variable follows a pure MA-process, a form of dynamic
factor analysis is obtained. More generally, one basic ARMA model can be replicated in
some way. For example, different time series may refer to different manifestations of the
same physical process, so then replication units are distinct measurements of the same
factor as in the common factor model. Alternatively, replications could consist of different
individual growth paths. Yet another possibility is to partition a single univariate series into
equally long periods and use covariance structure modelling to see if some periods deviate
from the basic ARMA model. The replication unit is then, for example, a week or a year.

For one reason or another, many proficient users of multivariate techniques view the
analysis of time series as something that uses entirely different concepts and methods. This
is unfortunate because it inhibits cross-fertilization. A tremendous body of knowledge on
multivariate methods has accumulated in the social sciences. This wisdom is practically
dormant as time series data is concerned. The present work hopefully contributes to
awaken some of this potential and will assist in a wider understanding and a better
appreciation of time series in behavioral research.
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Appendix

SAS code for estimating ARMA parameters using PROC CALIS.
Variable vO is the time series, v1 is its first lag, v2 is its second lag, and so on,
f0 is the first latent factor, f1 the second, and so on.

proc calis cov; /* ARMA(1,0) model */
lineqgs v0 = phil v1 + £0;
std £f0 = sigma2;
bounds -1 <= phil <= 1;

proc calis cov; /* ARMA(2,0) model */
linegs v0 = phil vl + phi2 v2 + £0;
std f0 = sigma2;
bounds -2 <= phil <= 2, -1 <= phi2 <= 1;

pProc calis cov; /* ARMA(0,1) model */
linegs vO = £0 + thetal f1,
vl = £f1 + thetal £2;
std £f0-£f2 = sigma2;
bounds -1 <= thetal <= 1;

proc calis cov; /* ARMA (0,2) model */
linegs vO = £0 + thetal f1 + theta2 £2,
vl = f1 + thetal £2 + theta2 f£3,
v2 = £2 + thetal £3 + theta2 f4;
std f0-£f4 = sigma2;
bounds -2 <= thetal <= 2, -1 <= theta2 <= 1;

proc calis cov; /* ARMA(1,1) model, covariance method */
linegs v0 = phil vl + £f0 + thetal f£1,
vl = phil v2 + £f1 + thetal £2;
std £f0-£f2 = sigma2;
- cov v2 £2 = cov22;
bounds -1 <= thetal phil <= 1;

proc calis cov; /* ARMA(1,1) model, noise method */
linegs v0 = phil v1 + £f0 + thetal £1,
vl = phil v2 + £1 + thetal £2,
v2 = £2 + e2;
std £f0-f2 = sigma2,
e2 = e2se;
bounds -1 <= thetal phil <= 1;
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