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SUMMARY

The World Health Organization (WHO), in collaboration with a number of research institutions world-
wide, is developing new child growth standards. As part of a broad consultative process for selecting
the best statistical methods, WHO convened a group of statisticians and child growth experts to review
available methods, develop a strategy for assessing their strengths and weaknesses, and discuss method-
ological issues likely to be faced in the process of constructing the new growth curves. To select the
method(s) to be used, the group proposed a two-stage decision-making process. First, to select a few
relevant methods based on a list of set criteria and, second, to compare the methods using available
tests or other established procedures. The group reviewed 30 methods for attained growth curves. Using
the pre-de�ned criteria, a few were selected combining �ve distributions and two smoothing techniques.
Because the number of selected methods was considered too large to be fully tested, a preliminary
study was recommended to evaluate goodness of �t of the �ve distributions. Methods based on distri-
butions with poor performance will be eliminated and the remaining methods fully tested and compared.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Child growth charts are among the most commonly used tools for assessing the general well-
being of infants and children and the communities in which they live [1]. They are very
useful determining the degree to which physiological needs for growth and development are
being met during the fetal and childhood periods. Recognizing the shortcomings of the current
National Center for Health Statistics=World Health Organization (NCHS=WHO) international
growth reference, WHO in 1994 began planning for new references based on how children
should grow in all countries rather than merely describing how they grew at a particular time
and place [2, 3]. This approach explicitly recognizes that growth references are often used as
standards, that is, as tools that enable value judgements.
The WHO Multicentre Growth Reference Study (MGRS) (1997–2003), constituting the

second phase of the growth standards project, collected primary growth data and related
information from about 8500 children from widely di�ering ethnic backgrounds and cultural
settings (Brazil, Ghana, India, Norway, Oman and U.S.A.). The MGRS aimed to describe the
growth of children whose care has followed recommended health practices and behaviours
associated with healthy outcomes [4]. The design combines a longitudinal study from birth
to 24 months with a cross-sectional study of children aged 18–71 months. In the longitudinal
study, mothers and newborns were screened and enrolled at birth and visited at home a total
of 21 times on weeks 1, 2, 4 and 6; monthly from 2 to 12 months; and bimonthly in the
second year. A detailed description of the study protocol and its implementation can be found
elsewhere [5]. Rigorous quality control measures were applied to ensure high quality data
[6, 7].
Attained growth references are being constructed for weight-for-age, length=height-for-age,

weight-for-length=height, head circumference-for-age, mid-upper arm circumference (MUAC)-
for-age, body mass index (BMI)-for-age, triceps skinfold-for-age and subscapular
skinfold-for-age. Numerous methods for constructing growth references are described in the lit-
erature. Some of these present similar analytical approaches but di�er in speci�c methodolog-
ical aspects (e.g. distributional assumptions or smoothing techniques). An important step in
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constructing the new growth curves was to review the strengths and weaknesses of the most
relevant methods with respect to the MGRS data set’s characteristics (e.g. frequency of mea-
surements and study designs speci�cs) and to select a subset for further evaluation.
As part of a broad consultative process for selecting the best methods, in January 2003

WHO convened a group of statisticians and child growth experts. This paper summarizes
the discussions and recommendations from this statistical advisory group. Section 2 of the
paper discusses methodological issues relevant to the construction of the WHO growth curves
(including distributional and smoothing aspects, the merging of longitudinal and cross-sectional
data, and the handling of the edge e�ect); Section 3 reviews available statistical methods for
constructing growth curves building up on an earlier review [8]; Section 4 de�nes criteria for
selecting the most appropriate methods and, based on these criteria, selects a few methods that
merit further consideration; and Section 5 describes diagnostic tools to be used for assessing
the goodness of �t.

2. METHODOLOGICAL CONSIDERATIONS ON THE CONSTRUCTION OF THE
WHO CHILD GROWTH STANDARDS

To construct attained growth curves, the distributional properties of the anthropometric mea-
surements must be studied and centile estimates derived within and across ages. For the most
common anthropometric indices knowledge from existing references can be used as a starting
point [9–14]. However, original features associated with the longitudinal design of the MGRS,
its prescriptive approach, and collection of additional anthropometric measurements are suf-
�ciently novel to raise new challenges [5]. For example, little is known about longitudinal
patterns of subscapular and triceps skinfold thicknesses in early childhood.

2.1. Distributional aspects

Methods based on distributional assumptions have been used widely for their ability to produce
z-scores and estimate extreme centiles more accurately. This requires appropriate agreement
between the data’s distribution and the selected method’s distributional assumptions. Distribu-
tions usually are characterized by summary statistics related to three moments: mean, standard
deviation (or coe�cient of variation (CV)) and skewness. However, the e�ect of the distribu-
tion’s fourth moment, i.e. the kurtosis, is increasingly seen as possibly important in estimating
extreme centiles.
We illustrate in Figure 1, the case where kurtosis is signi�cantly larger than in the normal

distribution (i.e. data distribution presents heavier tails than the normal distribution), using data
of subscapular skinfold thickness for boys at 4 months. The histogram in Figure 1(a) shows the
�t (line) of the Box–Cox normal distribution [15] to the data. The detrended quantile–quantile
(Q–Q) plot for the �tted z-scores in Figure 1(b) indicates how data di�er from the assumed
underlying distribution. The vertical axis of the detrended Q–Q plot represents, for each ob-
servation, the di�erence between empirical and (theoretical distribution) expected z-scores.
The points form a worm which, when �at, indicates good �t of the assumed distribution [16].
Each shape of worm describes a di�erent aspect of the model �t. For example, the S-curve
shape is associated with the kurtosis (fourth moment of the distribution). The D’Agostino
tests [17] contain a test for the skewness, another for the kurtosis and an omnibus test
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Figure 1. (a) Distribution of subscapular skinfold thickness data for boys at 4 months; and (b) Goodness
of �t for the Box–Cox normal distribution (global deviance and D’Agostino tests p-values).

combining skewness and kurtosis. In this example, the D’Agostino test for the kurtosis applied
to the z-scores produced by the Box–Cox normal distribution model indicates residual kurtosis
(p-value equal to 0.003), agreeing with the diagnostic using the detrended Q–Q plot.
The WHO statistical advisory group suggested that the behaviours of the sample me-

dian, standard deviation, skewness and kurtosis be examined for all measurements across
age. Attention was called to the di�culties of e�ectively modelling kurtosis through extrap-
olation given the sparse information usually available at the tails. Thus, the group recom-
mended that methods adjusting for kurtosis be compared with methods that adjust only for
the �rst three moments. A more complex model should be used only if there is signi�cant
improvement.

2.2. Smoothing aspects

Selecting the degree of smoothness necessary for adequate centile estimations is not a straight-
forward task, and it can be a rather subjective undertaking. Lack of smoothing leads to very
irregular growth curves, even with large sample sizes. This is due to sampling variability
across ages and to the e�ect of remaining outliers and measurement variability. Smoothing
is an attempt to remove part of these e�ects without disturbing the true underlying growth
pattern. The over-smoothing of growth curves �attens biological growth patterns’ peaks and
valleys, resulting in biased �tted growth curves. The choice of the smoothing function is as
important as the choice of the distributional assumptions. While the distribution assumption is
age-speci�c, i.e. it de�nes the probability with which measurements occur at a speci�c age,
the smoothing function deals with across-age relations.
For the age-smoothing component, �exible functions are needed, especially at ages when

growth velocity is faster. In some cases, the use of age transformation prior to smoothing is
necessary to facilitate dealing with peaks and valleys at early ages, i.e. close to birth or close
to the �rst measurement record. For example, the normal gain in fat in the �rst four months
of infancy, followed by a drop in per cent body fat, generates a peak in the triceps skinfold
thickness pattern between 4 and 6 months. In considering this same anthropometric indica-
tor, adiposity rebound starting at approximately 2 years of age in relatively fatter children
is associated with rapid increases in the absolute values of upper centiles, thereby a�ecting
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skewness after that age. The smoothing technique combined with the estimated distribution
should be able to re�ect speci�c aspects of such measurement pattern. For some curve con-
struction methods, worm plots [16] can be used to help ascertain the appropriate degree of
smoothing.

2.3. Merging longitudinal and cross-sectional data

The new curves being constructed use longitudinal (birth to 24 months) and cross-sectional
data (18–71 months), thus providing overlap between 18 and 24 months. One important
advantage of the MGRS is that both longitudinal and cross-sectional samples were taken from
the same populations [5]. Nevertheless, di�erences in the means and variances between the
two samples may occur due to sampling errors and their di�erent designs. In the longitudinal
study, the measurements are concentrated around pre-speci�ed targeted ages (with a 10 per
cent tolerance) and correlated among ages, whereas in the cross-sectional study, observations
are independent and evenly spread over the age range.
Figure 2 shows how the MRGS longitudinal and cross-sectional data merge for weight

and length=height in terms of empirical quantiles against age. The cross-sectional data were
adjusted to the midpoint of the age group using a linear interpolation for each 3-month age
interval. To the cross-sectional height data, 0:7 cm were added, the di�erence between length
and height estimated by the mean of the di�erences between length and height for children
whose both measurements were taken during the overlapping period. For these two measures,
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Figure 2. Empirical medians (symbols) and 10th and 90th centiles (lines) for weight for
(a) boys and (b) girls and length for the longitudinal component and height +0.7 for the

cross-sectional component for (c) boys and (d) girls.
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small di�erences in medians are observed during the overlapping period. For length, di�erences
are negligible for the median, 10th and 90th centile curves. For weight, di�erences in medians
are small, bigger for boys (between 250 and 400g from 20 to 24 months). Di�erences between
the 90th empirical centiles of the longitudinal and cross-sectional samples for weight are also
small (between 200 and 550 g 20 to 24 months), approximately 4 per cent of the mean value
of the 90th centiles at these age groups, which is around 13 250 g combining boys and girls.
The statistical advisory group suggested that empirical estimates of the longitudinal and

cross-sectional samples means and variances be compared for measurements with distribution
close to normal, and medians, 10th and 90th centiles be compared for measurements that
depart from the normal distribution. If no signi�cant di�erences are detected, merging of the
two data sets should be done simply by pooling the two samples. However, if di�erences are
noted, especially in the overlapping period, it is unlikely that available methods will be able
to smooth out arti�cial pattern deviations without applying a weighting, or other procedure,
to correct for the varying amounts of information contributed by each of the two samples.

2.4. Handling edge e�ects

Edge or boundary e�ects in the context of growth curves are related to the fact that the
precision of the estimation is smaller at the extremes of the age range than near the mean.
The size of this e�ect on the �nal estimation can be assessed by means of the leverage of the
individual points on the curve, which depends on the shape of the curve, the choice of the
smoother, the pattern of ages when measurements are made, and the number of measurements
at each age. A simulation study was carried out to assess the leverage of observations following
a similar design presented by the MGRS, based on the minimum samples sizes requested (400
children by age in the longitudinal component and 400 children by 3-month age group in the
cross-sectional). The study indicated that over-sampling at birth (4 times the original sample
of 400 children=age) and extending the cross-sectional component from 5 to 6 years would
stabilize the leverage function within the target age reference interval from birth to 5 years
(document available upon request from the authors).
Thus, although the new growth curves will extend only to 60 months, data were collected

until 71 months of age and all the data will be used to construct the curves to minimize
the ‘right-edge e�ect’. To minimize the ‘left-edge e�ect’ for weight, head circumference and
length, the number of data points for the lower limit, i.e. the at-birth sample, was enlarged
by using newborn data collected during screening. As a result, the birth sample is 1737. For
MUAC and skinfolds, data collection started at 3 months of age and the sample size was not
increased at this age to handle the ‘left-edge e�ect’. Nonetheless, the advisory group noted
that starting references at later ages, possibly at 6 months, for skinfolds could add edge e�ects
given the peak of the curve around that age. To judge when to start MUAC and skinfolds
curves, the group recommended that standard errors of centile estimates be assessed after
constructing the curves using all the data.

3. METHODS FOR THE CONSTRUCTION OF GROWTH CURVES

In 1997, Wright and Royston provided a comprehensive review of the most commonly
used methods for the construction of growth curves [8]. Since then, a number of new methods
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Table I. Methods for the construction of attained growth curves.

Centiles Curve-�tting Distributional
Method [Reference] estimation method assumptions

Bin methods, no smoothing
Raw centiles, estimated Separately None None
separately [18]

Bin and smooth methods, without distributional assumptions
Fixed knot splines [9] Separately Fixed knot splines∗ None
Eye �tting Separately Eye �tting∗ None
(weight=age) [19]
Kernel regression Separately Kernel estimation∗ None
[20, 21]

Step 1 Separately 3-parameter linear∗ NoneCDC [14] Step 2 Together Cubic splines∗ Box–Cox normal

Bin and smooth methods, with distributional assumptions
Eye �tting Together Eye �tting† Normal
(height=age) [22]
Box–Cox normalization Together Eye �tting† Box–Cox normal
[23]
LMS, version-1 [24] Together Cubic splines or others† Box–Cox normal
Variance stabilization Together Polynomials† Normal
(height=age) [25]
Polynomial �tting [26] Together Polynomials† Normal

Age handled continuously, without distributional assumptions
Quantile regression, Separately Quantile regression∗ None
estimated separately [27]
HRY method [28] Together Polynomials∗ None
Adapted HRY Together Grafted polynomials∗ None
method [29]
Kernel density Together Kernel density estimation‡ None
estimation [30]
Non-Gaussian quantile Together Nearest-neighbour None
curves [31] kernel density of

conditional cdf‡

Non-Gaussian quantile Together 4-parameter monotonic None
curves [32] function (mean) and

linear (dispersion)†

Regression quantiles, Together Natural splines† None
estimated together [33]

Age handled continuously, with distributional assumptions
Multilevel models [34] Together ML estimation of linear Normal

and non-linear models†

Aitkin [35] Together Linear models† Normal
Thompson and Theron [36] Together Polynomials† Johnson system
LMS, version-2 [15] Together Cubic splines† Box–Cox normal
Wade and Ades [37] Together Exponential functions† Box–Cox normal
Wade and Ades (with Together ML exponential Box–Cox
correlations) [38] (spread, skewness); normal

polynomial (mean)†

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:247–265
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Table I. Continued.

Centiles Curve-�tting Distributional
Method [Reference] estimation method assumptions

FPET method [39] Together Fractional polynomials† (Modulus)-exponential-normal
Additivity and variance Together Non-parametric Normal
stabilization (AVAS) [40] regression AVAS†

Mean and dispersion Together Parametric or Normal
additive models non-parametric functions
(MADAM) [41] (MADAM)†

S-distribution [42] Together Polynomials† S-distribution
GAMLSS [43] Together Linear parametric or Various

additive non-parametric†

LSMT [44] Together Cubic splines or Box–Cox-t
(fractional) polynomials†

LSMP [45] Together Cubic splines or Box–Cox-power-exponential
(fractional) polynomials†

∗Applied to centiles.
†applied to distributional parameters.
‡centiles calculated from density �tting.

have been proposed. Table I summarizes 30 existing methods that could potentially be used
for the construction of the WHO attained growth curves [9, 14, 15, 18–45]. We have included
methods that although are not state-of-art, they are of historical importance, e.g. the method
by Roche et al. [18] reporting raw centiles, or methods that used ‘eye �tting’ as smoothing
technique [19, 22, 23]. The methods have been grouped according to whether they use binning
(i.e. age groups) or treat the age continuously, and according to whether they use distributional
assumptions or not.

3.1. Bin methods (using age grouping) without distributional assumptions

From the group of methods that estimate centiles separately using age grouping and no dis-
tributional assumptions (often called ‘bin and smooth centiles’), the work of Hamill et al. [9]
can be cited as the �rst growth curves to be �tted mathematically. These were derived by
dividing the data into 1-year age groups, calculating seven centiles from the 5th to the 95th in
each group, and then using cubic splines to smooth each centile across age. Knot placements
were made the same for all the centiles on each chart. Gasser et al. [20] and, more recently,
Guo et al. [21] applied kernel regression to smooth empirical centiles.
The recent Center for Disease Control and Prevention (CDC) growth curves [14] were

constructed using a two-step method. In a �rst step, a wide variety of methods were tested to
model empirical centiles observed in age bins. The method ultimately chosen di�ered accord-
ing to the di�erent growth measures considered. For length-for-age, weight-for-age and head
circumference-for-age (birth to 36 months), a 3-parameter linear modelling of the empirical
centiles was applied [46]. For height-for age, a non-linear model was selected and for weight-
for-length and weight-for-height, a �fth degree polynomial was used. For weight-for-age and
BMI-for-age in children older than 24 months, smoothing of the empirical centiles �rst in-
volved robust locally weighted regression [47] followed by polynomial regression. The second
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step was an ‘a posteriori’ LMS [15] approximation of these smoothed empirical centiles to
calculate z-scores.

3.2. Bin methods with distributional assumptions

From the group of methods that estimate centiles separately using age grouping with distri-
butional assumptions (also called ‘bin and smooth distribution parameter to obtain centiles’),
the work of Tanner et al. [22] assumed that height was normally distributed throughout
childhood to construct height curves. Centiles were estimated together and age grouping was
employed. They adjusted the variances using the method by Healy [48] to compensate for
increased variation due to grouping the data. Eye �tting was used to smooth the centile
curves. Chinn [25] suggested a transformation on height to stabilize the standard deviation
across age groups. Centiles were calculated using the normal distribution �tted on the back-
transformed residuals generated from a cubic polynomial �tting on the transformed height.
Niklasson et al. [26] also used polynomial �tting for smoothing the mean and standard devia-
tion curves, estimated under normality or power–normality assumption, to update the Swedish
references.
To handle age-dependent non-normality and estimating centiles together, Dibley et al. [49]

describes the method used for constructing normalized growth curves based on the 1977 NCHS
references. For weight-for-age and weight-for-height, the centiles were normalized using two
separate standard deviations at each age. The �rst standard deviation was calculated from the
5th, 10th, 25th and 50th empirical centiles, and the second from the 50th, 75th, 90th and 95th
empirical centiles. The Box–Cox power transformation [50] was the basis for some proposed
methods for constructing growth references, given its capacity to ‘normalize’ the data to a
reasonable degree in terms of skewness. Extending earlier work by Van’t Hof et al. [23], Cole
[24] proposed the �rst version of the LMS method using age grouping. In Cole’s method, the
Box–Cox powers � were estimated by maximum likelihood rather than minimum skewness,
and the age-speci�c variation of the distribution was expressed by the CV rather than the
standard deviation. The L, M and S functions for the Box–Cox power transformation, mean
and CV, respectively, �tted across age, were used for completely characterizing any centile
curve and allowing for easy calculation of z-scores.

3.3. Age handled continuously, without distributional assumptions

Koenker and Basset [27] estimated centiles separately considering age as a continuous vari-
able and introducing the concept of regression quantiles, where the �-quantile curve was the
linear function. Their method minimized a weighted sum of positive residuals with weight
�, and negative residuals were made positive and weighted by (1-�). An extension to this
work with a cubic spline replacing the linear function, was later proposed [51] using the
modi�cation by Efron [52], minimizing the square error loss function. Other regression-
quantiles-based methods were proposed in the same vein [31, 32], but estimating centiles
together.
For centiles estimated together, there has been recent work in terms of non-parametric

methods. The HRY method [28] estimated each centile as a rough curve using the modi�cation
of Cleveland’s locally weighted scatter plot smoother [47]. Each centile was smoothed using a
polynomial function. However, a series of constraints was applied to the coe�cients to force
commonality on the centiles, preventing the centile curves from crossing. One weakness of

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:247–265



256 E. BORGHI ET AL.

the method is the in�exibility of the polynomials. Pan et al. [29] overcame this by using
grafted polynomials, enabling them to �t centiles to height and weight data for over 9000
Chinese children up to 6 years of age.
Heagerty and Pepe [33] generalized an earlier work by He [53] that proposed a re-

stricted version of regression quantiles that eliminated the problem of quantile (i.e. centile)
crossing. The method provided three functions that summarize the complete model. While
in He [53] the third function was �xed, Heagerty and Pepe [33] allowed this distribution
to vary as a function of covariate(s). The distribution was estimated through local ker-
nel smoothing of the empirical distribution function of the standardized residuals. Earlier
work by Rossiter [30] used the kernel approach for density estimation for calculating centile
curves.

3.4. Age handled continuously, with distributional assumptions

For centiles estimated together and for which normality is assumed and age is treated as a
continuous variable, Aitkin [35] estimated the mean with a linear regression model, and the
residual variance about the mean with a log-linear model, using maximum likelihood estima-
tion. In the same group of methods, Altman [54] �tted the spread across age by modelling
the absolute residuals about the �tted mean as a function of age. Royston [55] suggested
�tting centiles using low-order polynomials for the mean and spread. In more recent work,
Royston and Wright [39] proposed a more �exible class of functions composed of low-order
fractional polynomials for each of the parameters of a modulus-exponential-normal (MEN)
distribution.
Rigby and Stasinopoulos [56] presented a �exible model for variance heterogeneity that as-

sumed normal errors. Both mean and variance were modelled using semi-parametric models,
called ‘mean and dispersion additive model’ (MADAM). More recently, they have proposed
the use of a subclass of MADAM for modelling the mean and variance (or log-variance), in-
cluding parametric or smooth non-parametric functions of age for constructing age-related cen-
tiles [41]. Tango [40] proposed a non-parametric regression based on additivity and variance
stabilization (AVAS) procedure, but ultimately using the normal assumption for constructing
the centiles.
When departure from the normal distribution occurred, the use of more �exible families

of distributions for constructing growth curves has been investigated. Cole and Green [15]
extended Cole’s LMS method [24] which adjusts for skewness. They improved the previous
method which applied age grouping to allow the data to be analysed continuously on age
with the L, M and S curves �tted by maximum penalized likelihood, applying cubic splines
smoothing. Wade and Ades [37] developed a similar method to �t centiles with age trends
in the Box–Cox power, mean and SD functions being speci�ed by exponential parametric
functions, rather than cubic splines. Sorribas et al. [42] proposed a parametric method based
on the S-distribution that covers a wide range of shapes and types of skewness, to construct
smoothed centile curves across ages.
The problem of signi�cant kurtosis in the residuals from the LMS method has been high-

lighted [8, 12, 16]. Thompson and Theron [36] produced centiles based on the Johnson family
of 4-parameter distributions that specify location, scale and two shape parameters [57]. They
modelled the location and scale parameters using polynomials in age and the shape parame-
ters as constants and �tted the model by maximum likelihood [36]. Royston and Wright [39]
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also proposed a completely parametric method, namely the fractional polynomials and expo-
nential transformation (FPET) method. Fractional polynomials of age [58] are used to model
the parameters of a chosen 3- or 4-parameter distribution estimated by maximum likelihood.
They consider the distributions ‘exponential-normal’ (EN) and ‘modulus-exponential-normal’
(MEN), based on transformation of the data towards normality.
Rigby and Stasinopoulos [43] proposed a class of univariate statistical models—generalized

additive models for location, scale and shape (GAMLSS)—that could be applied to data
presenting skewed and=or kurtotic continuous or discrete distributions. The systematic part of
the model was expanded to allow modelling the location (e.g. median) and other parameters
of the distribution of the response variate as linear parametric and=or additive non-parametric
functions of explanatory variables. Maximum (penalized) likelihood estimation was used to
�t the models. It was suggested that, for each �tted GAMLSS model, the randomized quantile
residuals [59] should be used to check model’s adequacy and especially the response variable’s
distribution. These residuals are z-scores, which always have a standard normal distribution
if the model is correct.
Within the GAMLSS framework, Rigby and Stasinopoulos [44] proposed the LMST method

of centiles estimation for a response variable exhibiting both skewness and kurtosis larger
than 3 (i.e. leptokurtic data), which is based on the Box–Cox t (BCT) distribution. This
model assumes that a transformed response variable (using the same transformation used by
Cole and Green [15]) has a Student t distribution with degrees of freedom parameter �¿ 0
(with � treated as a continuous parameter). The Box–Cox t distribution has 4 parameters,
denoted by �, �, �, �, related to location (median), scale (CV), skewness (power trans-
formation to symmetry), and kurtosis (t distribution degrees of freedom), respectively. The
�rst three parameters �, �, � are those used in the LMS method. When � tends to in�n-
ity, the Box–Cox t distribution converges to the Box–Cox normal distribution used in the
LMS method.
To overcome the limitation of the Box–Cox t distribution caused by the fact it han-

dles only leptokurtic data, Rigby and Stasinopoulos [45] developed a more �exible dis-
tribution, the Box–Cox-power-exponential (BCPE) distribution. This distribution is able to
model any type of kurtosis (lepto, platy or mesokurtosis). The Box–Cox normal distribu-
tion is a particular case of the BCPE distribution for the case the fourth parameter � is
equal to 2 (i.e. mesokurtic case). They called this generalization of the LMS method the
LMSP method.
Both the LMST and LMSP methods provide highly �exible models for location, scale,

skewness and kurtosis of the response variate using the GAMLSS [43]. Each of the 4 para-
meters can be modelled using parametric (e.g. fractional polynomial) or non-parametric (e.g.
cubic spline) functions of the explanatory variable, e.g. age. The model �tting is achieved by
maximum (penalized) likelihood. A simple formula for computing centiles and z-scores can
be provided. Additional covariates or factors can also be included in the model, if required,
allowing adjustments to the parameters, especially �, for other explanatory variables (e.g. sex,
parental height, etc).

3.5. Methods incorporating correlations

There has been little development towards the �tting of growth curves with correlated mea-
surements (i.e. repeated measurements), as most existing methods are based on cross-sectional
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designs. Mixed-e�ect models can be used for modelling growth curves, since they allow the
partitioning of the variance to the contribution of between- and within-subject variability.
Laird and Ware [60] wrote about two-stage random-e�ect models for growth and the empir-
ical Bayes estimates of parameters in a speci�ed model. This method assumes that data are
normally distributed and that inference based on non-normal data should be done only after
a normalizing transformation. Milani et al. [61] applied this methodology to the construction
of longitudinal growth norms for length. They used measurements taken at birth and at 5–8
follow-ups between 3 months and 3 years of life in Italian children. In a more general frame-
work, Goldstein [34] proposed the use of multilevel models to resolve longitudinal problems,
including those presented by growth studies. This class of mixed-e�ect models or random-
e�ect models allows for complex structures of covariance and also for explanatory variables
that depend on age. Multilevel modelling with non-parametric components also is found in
References [62–64].
Recently, some authors expressed interest in investigating the e�ects of a correlation struc-

ture on the modelling of growth curves [38, 63, 64]. Wade and Ades [38] proposed an LMS-
based maximum likelihood method for �tting age-related growth curves that incorporates
explicit modelling of within-subject correlations. Applied to CD4 counts of uninfected children
born to HIV-1-infected women, correlation structures of varying degrees of complexity were
considered; exponential models were used to �t spread and skewness trends, and high-degree
polynomials and exponential models to �t the median trend. The data consist of routinely
collected serial measurements where the number and timing of repeats are assumed to be un-
related to the actual values of the measurements. Five di�erent correlation structures combined
with �ve models for the median were compared and the method of ‘pro�le likelihood’ [65]
was used for the construction of con�dence intervals with an iterative algorithm. Despite the
presence of a strong correlation structure, the results showed that incorporating a correlation
structure into the likelihood function had little e�ect on the choice of the model for the mean
curve or on the �tted centiles. Moreover, the precision with which the centiles was estimated
were not a�ected to any clinically important degree when the correlations were incorporated.
In the case of the longitudinal component of MGRS data set, timing of repeats is �xed

and number of measurements taken per child is constant, apart from few sporadically missing
visits. As a result, we do not expect bias in the estimate of the mean curve. A special
e�ort is needed, however, to accurately estimate the con�dence intervals around the centile
estimates. The choice of using methods that apply to cross-sectional data on the longitudinal
study component can be combined with the use of the bootstrap technique for deriving the
standard errors associated with centile estimates. To accomplish this, resampling of children
(i.e. vectors of measurements) will be done with replacement to create the new samples of the
same size in the bootstrap procedure, which will lead us to correctly estimating the standard
errors of the centile estimates.

4. CRITERIA AND SELECTION OF METHODS

4.1. Criteria for methods selection

The selection of methods for constructing the attained growth curves should be based on
the criteria that account for the MGRS data set’s characteristics and the uses of the future
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standards. The advisory group agreed on the following points to guide the method selection:

• Outer centiles cannot be estimated with su�cient precision without relying on an under-
lying distribution, given the scarce information at the tails.

• The crossing of centiles must be avoided. Therefore, the simultaneous calculation of
centiles is necessary.

• Only methods that allow back-transformations should be considered so that direct calcu-
lation of centiles and z-scores is enabled.

• Because the MGRS data set is composed of both a longitudinal component, sampled
at target ages, and a cross-sectional component (where data were collected continuously
across the age range), its design does not favour the use of age-grouping methods for
estimating centiles. Interpolation to an age-group midpoint, followed by variability cor-
rection, could be applied to cross-sectional data, but treating age as a continuous variable
likely will avoid problems associated with variability and arbitrary choices of age group-
ings.

• Methods that are able to address kurtosis, in addition to skewness, are preferable; gen-
uine kurtosis can occur for some measurements and, if data are not modelled correctly,
resulting �tted centiles can be distorted.

The advisory group also discussed secondary criteria to be used in method selection. For ex-
ample, the method should provide easy assessment to goodness-of-�t diagnostic tools. Com-
putational simplicity should be considered in selecting between two methods that meet all
primary requirements equally well. Similarly, careful consideration should be given to any
single method that is �exible enough to be applied across all measurements.
In summary, the primary criteria agreed on for method selection were the ability to:

• estimate precisely outer centiles,
• estimate centiles simultaneously in such a way that they are constrained not to cross,
• estimate z-scores and centiles using direct formulae,
• apply continuous age smoothing, and
• account for both skewness and kurtosis when necessary.

The secondary criteria were:

• ability to assess �t to the data,
• easy to explain and well documented,
• useful for application to di�erent anthropometric measures so that the WHO growth
curves would rely on a single approach.

4.2. Method selection

The advisory group proceeded to review the 30 methods listed in Table I based on these
primary and secondary criteria. Only methods that treated age as a continuous variable, were
based on explicit distributional assumptions and simultaneously estimated centiles were con-
sidered.
The �nal short list of methods recommended for constructing the WHO growth curves was

• the FTPE by Royston and Wright [39] with the MEN distribution and fractional poly-
nomial �tting technique,
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• the GAMLSS method by Rigby and Stasinopoulos [43] with the Box–Cox t distribution
[44] or BCPE [45] distributions with a natural cubic spline-�tting technique (it also
includes the fractional polynomial),

• a method to be proposed using the Johnson’s family of distributions [57].
The LMS method [15], which uses the Box–Cox normal distribution, is a particular case of the
GAMLSS method, for which kurtosis is not modelled and a cubic splines technique is used
for �tting. Therefore, it was naturally retained for testing, which was considered important,
since it has been used successfully in many cases.
Given the many selected methods, the group proposed a preliminary study to decrease the

number of methods to be tested fully. As a �rst step, the group recommended that MGRS
data be used to evaluate various distributions relevant to the selected methods by comparing
the goodness of �t of �ve distributions

• the Box–Cox normal (3 parameters),
• the Box–Cox t (4 parameters),
• the BCPE (4 parameters),
• the MEN (4 parameters),
• the Johnson system (4 parameters).

Initially, the goodness of �t of each of the �ve distributions will be assessed separately for
the data in each separate age group (in the longitudinal study) for each growth variable.
The rationale for this �rst step was that if one family of distributions initially dominates
across separate age groups, the same distribution is likely to dominate when age smoothing
is introduced.

5. ASSESSING GOODNESS OF FIT

For testing and comparing the �nal methods, many diagnostic tools and tests have been
proposed in the literature. Some were cited by Van Buuren and Fredriks [16] for checking
the quality of the �t

(i) Visual inspection of the shape of the centile curves,
(ii) Centiles plotted with data points,
(iii) Empirical and �tted centiles plotted on top of each other,
(iv) Observed and expected counts of children with measurements below �tted centiles,
(v) Tests of normality for the z-scores,
(vi) Detrended normal Q–Q plot of the z-scores,
(vii) Worm plots.

Royston and Wright [39] proposed, among other tools, the use of model augmentation for
testing goodness of �t. The reduction in deviance that results from including k − 1 age-group
indicators in a model that includes a constant and the parametric terms is tested against �2

with k−1 degrees of freedom. If the test is signi�cant, there is evidence of model inadequacy.
The authors pointed out that, as this test does not take into account time ordering, it may lack
power. Also, the number of age groups is chosen subjectively and di�erent categorizations
may lead to di�erent conclusions about a given model.
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Another possible test to check a model’s goodness of �t is the Q-statistic, described by
Royston and Wright [66]. The distribution of �tted z-scores is tested for normality across age
using a combination of tests for the four moments of the distribution, the modi�ed D’Agostino
tests, and Shapiro–Wilk test. This provides guidance to which moments of the distribution
are inadequately modelled. The Q-statistic from a particular age range indicates whether the
corresponding moment is inadequately model in that age range. The Q-tests together with the
‘worm plots’ should provide trustworthy diagnostic.
Most of these goodness-of-�t techniques apply to the �nal growth curve, after smoothing

across age, as for example, the worm plots, the Q-test, and graphical tools (i)–(iii) in the list
above. Some, however, can be applied at age-speci�c level, like D’Agostino normality tests
on the z-scores, detrended Q–Q plots, and observed against expected counts comparisons.
For the preliminary study of the distributions, the group recommended that the goodness of

�t of the selected distributions for each age group be examined using the following diagnostic
tools:

(a) Comparison of the log-likelihood or global deviance equals −2 times the log-likelihood;
(b) detrended normal Q–Q plots of the �tted z-scores, i.e. plotting empirical quantiles

minus the normal quantiles against the normal quantiles;
(c) comparison of distribution model and empirical sample per cents;
(d) normality tests on the �tted z-scores, e.g. D’Agostino tests [17].

Figure 3 illustrates the comparison among the �ve distributions for the subscapular skinfold
thickness for boys at 4 months. This example was carried out using the software GAMLSS
[67], kindly provided by the authors. For these speci�c data, kurtosis is accounted for and
z-scores are corrected when using any of the 4-parameter distributions. We notice a decrease
of around 10 in global deviance, associated with an increase of 1 parameter in the model, com-
paring the �t using the BCPE distribution with the �t using the Box–Cox-power-exponential
distribution to the data, which is highly signi�cant using the generalized likelihood ratio test
for nested models. We also observe the visual change in the detrended normal Q–Q plot,
which show the considerable �attening of the worm formed by the points. The D’Agostino
tests of normality, as previously described in Figure 1, detects the residual kurtosis when
applying the Box–Cox normal distribution. Complete comparisons for all age groups in the
longitudinal study for all measurements are to be reported separately.
Nevertheless, simply comparing the goodness of �t at speci�c age groups may lead to

di�erent results from those obtained if smoothing across age is applied. In a further step, the
method(s) using the distribution(s) with better performance across age groups should be fully
tested, i.e. including the age-smoothing component.

6. CONCLUSIONS

The WHO statistical advisory group reviewed 30 methods for attained growth curves. Using
primary and secondary pre-set criteria, the advisory group selected three methods for testing,
combining �ve distributions and two smoothing techniques. Because the number of resulting
methods was considered too large to be fully applied and compared, a preliminary study
was recommended to evaluate distributional goodness of �t of the �ve distributions. The
results of this evaluation will be reported separately. Methods based on distributions with
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Figure 3. Goodness-of-�t comparisons for subscapular skinfold
thickness for boys at 4 months �tting distributions: (a) Box–Cox
normal; (b) Box–Cox T; (c) Box–Cox-power-exponential;

(d) Modulus-exponential-normal; and (e) Johnson SU.

poor performance will be eliminated and the remaining methods fully tested and compared.
The WHO statistical advisory group also stressed the importance of evaluating and �eld testing
the growth standards before releasing them for general use.
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