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CLUSTERING N OBJECTS INTO K GROUPS UNDER OPTIMAL SCALING
OF VARIABLES

STEF VAN BUUREN

DEPARTMENT OF PSYCHONOMY

UNIVERSITY OF UTRECHT

WILLEM J. HEISER

DEPARTMENT OF DATA THEORY

UNIVERSITY OF LEIDEN

We propose a method to reduce many categorical variables to one variable with k catego-
ries, or stated otherwise, to classify n objects into k groups. Objects are measured on a set of
nominal, ordinal or numerical variables or any mix of these, and they are represented as n
points in p-dimensional Euclidean space. Starting from homogeneity analysis, also called mul-
tiple correspondence analysis, the essential feature of our approach is that these object points
are restricted to lie at only one of k locations. It follows that these k locations must be equal to
the centroids of all objects belonging to the same group, which corresponds to a sum of squared
distances clustering criterion. The problem is not only to estimate the group allocation, but also
to obtain an optimal transformation of the data matrix. An alternating least squares algorithm
and an example are given.
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Problem

Consider a data matrix H (n × m) in which the rows correspond to n objects
measured on m categorical variables. Let c = (Cl ..... ci ..... Cn)’ be an initially
unknown vector of n integers ranging from 1 to k, and let k (2 -< k -< n) be a given
number of groups. The problem is to estimate e, that is, to sort each object into one of
k groups, such that e preserves the differences among the profiles hi (i = 1 ..... n) as
closely as possible. In cluster analysis this problem is known as the set partitioning
problem. Alternatively, it can also be viewed as a dimension reduction problem in
which the goal is to reduce a large number of categorical variables to one categorical
variable with k categories.

An important aspect of the problem is that the variables may be measured on
nominal, ordinal or interval scales, or on any mix of these. In the field of cluster analysis
a number of (dis)similarity coefficients has been proposed for mixed variables (e.g.,
Gower, 1971; Lance & Williams, 1967, 1968; Opitz, 1980). A different approach is to
transform mixed data into numerical variables, so that the use of Euclidean metric is
possible. We accomodate for mixed data by means of optimal scaling (Girl, 1981;
Young, 1981). The major difference with previous approaches is that we treat the
transformation and clustering problem simultaneously.

A closely related issue is that of differential weighting of variables. In DeSarbo,
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Carroll, Clark and Green (1984) and De Soete, DeSarbo and Carroll (1985) techniques
are discussed for simultaneously estimating both the cluster allocation and the variable
importance. Our method can be considered as a special case of SYNCLUS (DeSarbo
et al., 1984), since we will not consider a partitioning of the variables into sets. How-
ever, it is more general than SYNCLUS in that it allows a much wider class of data
transformations. Furthermore, the present method does not require explicit calculation
of the (n x n) inter object distances matrix.

The present method is a generalization of the sum of squared distances (SSQD)
cluster analysis problem to the case of mixed measurement level variables. So, in
principle it can be applied to any problem for which SSQD clustering has been proposed
with the additional advantage that it provides a transformation of the data that is
optimal with respect to the obtained cluster allocations. Theory and applications of
SSQD clustering are discussed in Hartigan (1975), Spiith (1985) and others. Our method
can also be useful in detecting and matching shapes in binary data, for example, for the
recognition Of characters, although we have not systematically explored these possi-
bilities. Another potential application area is in the field of latent class analysis
(McCutcheon, 1987).

Method

We assume that the reader is familiar with homogeneity analysis, also known as
multiple correspondence analysis or dual scaling. If not, one may consult for example
van Rijckevorsel and de Leeuw (1988). We adopt their notation here.

Let k = (k~ ..... kj ..... kin) be the m-vector containing the number of cate-
gories of each variable, and let p denote the dimensionality of the analysis. Let each
variable hj(j = 1 ..... m) be coded into an (n × kj) indicator matrix Gj, and let the
allocation vector e be coded into the (n × k) indicator matrix Gc. Furthermore, define
X as a (n x p) matrix of object scores and define m (kj × p) matrices Yj of category
quantifications. Homogeneity analysis then amounts to minimizing

~r(X; Yl ..... Ym) = -- tr (X- GjYj)’(X- GjY/)
mj=l

(1)

over X and Yj under appropriate normalization conditions. We deal with mixed mea-
surement levels by restricting the class of data transformations, that is, we restrict Yj.
A systematic description of these types of restrictions can be found in de Leeuw (1984).

In this paper we introduce a restriction on the object scores X. Let Y be a (k × p)
matrix of cluster points. We replace each point xi, the i-th row of X, by a corresponding
cluster point Yr, the r-th row of Y. This is equivalent to requiring X = Gc Y. If v denotes
the vector of the first k integers, then c = Gcv. Working with X = Gc Y instead implies
that apart from allocation, we also aim for a scaling of the clusters in p-dimensional
space. Now (i) can be written 

o(Gc; Y; Yl ..... Ym) = -- tr (GcY- GjYj)’(GcY- GjYj).
mj=l

(2)

We minimize (2) by alternating least squares. For fixed Gc and Y (2) can be minimized
over Yj by the procedures described in Girl (1981). On the other hand, suppose that
Z = 1/m X Gj Yj. Then by inserting the identity Gc Y = Z - (Z - Gc Y) into (2) and
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noting that the cross product vanishes we find that the loss function can be split into
additive components as follows:

tr(Gc; Y; El ..... Yrn) = -- tr (Z-GjYj)’(Z-GjYj) tr (Z-GcY)’(Z-GcY).
m. j=l

(3)

For fixed Yl ..... Ym the first component of (3) is constant, so it is only the second
component that must be minimized over G¢ and Y. In cluster analysis this problem is
known as sum of squared distances (SSQD) clustering. It can be easily seen that for any
allocation Gc the criterion is minimized over Y by setting Y := (GcGc) GcZ, that is,
by setting the cluster points Yr equal to the cluster centroids in terms of Z. A number
of procedures is known for minimizing the SSQD criterion over all possible allocations
Gc. In the remainder we adopt the iterative K-means algorithm (Hartigan, 1975; Sp~ith,
1985), because this algorithm is well studied, it is applicable to large data sets, and it has
satisfactory performance characteristics (Milligan, 1980; Scheibler & Schneider, 1985).
As a final step we set X : = Gc Y.

In order to avoid the trivial outcome where both Yl ..... Ym and X are zero, some
normalization of (1) and (2) should be undertaken. In (1) we can X’X = I, but i n (2
this is inconvenient since we must simultaneously deal with two types of restrictions on
X: the normalization and the clustering restriction, and this leads to computational
complications. For the same reason, normalization of the category quantifications

Y1 ..... Ym is inconvenient.
A more attractive alternative is to apply a transfer of normalization procedure, also

used by van der Burg and de Leeuw (1983) in a canonical correlation context. This can
be done because the restrictions remain satisfied under linear transformations. The idea
is that a normalization on X can be transferred to a normalization on Y1, ̄  ¯ ¯ , Ym, and
vice versa, while preserving the loss. We will now demonstrate that this is possible for
tr(X; YI ..... Ym) in (1). A completely analogous result is true for (2). Suppose 
have some solution with normalization X’X = I, then nonsingular transformation ma-
trices P and Q can be found such that tr(X; YI ..... Ym) = o’(XP; YIQ ..... YmQ)
with normalization E (YjQ)’GjGjYjQ = I by using P = KA and Q = KA-1 from the
eigenvalue decomposition 1/m X ~jGjGjYj = KAZK’. By substituting for X and Yj and
expanding the result we derive

o’(X; YI

Applying the procedure twice enables us to estimate Gc and Y under normalization
X (YjQ)’G~GjYjQ = I and YI ..... Ym under normalization X’X = I.

Some comments must be made about the expected properties of the clusters that
the SSQD criterion produces. First, as demonstrated theoretically by Binder (1978),
anticipated in Bock (1972), and found empirically as well (Gordon, 1981, p. 52), 
clusters tend to be of roughly equal size. If one has prior evidence that a data set
strongly deviates from this type of clustering, one should hesitate to use our procedure.
Second, Wishart (1969) notes that the SSQD criterion favors hyperspherically shaped
clusters, even when the data clearly exhibit other (e.g., chaining) structures. Other
criteria may be more appropriate in the latter case, although our use of data transfor-
mations will tend to alleviate this drawback. Third, Friedman and Rubin (1967) show
that the criterion may give rise to different partitions if the data are linearly trans-
formed. Indeed, in the present case, the SSQD criterion is not applied to the data itself,
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but to a subspace of the optimally scaled variables. Thus we search for the best par-
tition over a potentially much wider class of transformations.

Algorithm

The method was implemented in a FORTRAN computer program called
GROUPALS. The program takes the following algorithmic steps:

Step 1: Initialization. The user must supply the desired number of clusters k and
the dimensionality of the solution p. Construct m indicator matrices Gj. Initialize X°

with orthonormalized random numbers, and let G~° be the indicator matrix of some
initial partition. Define Dj = GjGj. Set iteration counter t = 1.

Step 2: Quantification. Let YJ := D;1G~Xt-1 forj = 1, -.. , m. This step mini-
mizes (2) over Yj for a given Xt-~ and it corresponds simply to calculating the centroids
of objects in the same category. Subsequently, level restrictions are carried out on the
relevant quantifications YJ, by projection.

Step 3: Transfer normalization to quantifications. Compute the eigenvalue decom-
position of 1/m X Yj,DjYj = KA2K’. Let Zt := 1/m Y~ GjYjtKA-1.

Step 4: Estimation of cluster allocations. Minimize the SSQD criterion
tr (Zt - Gc Y)’(Zt - Gc Y) over Gc and Y, given Zt and Gct- l, by the K-means algorithm.

t tThis results in Gct and yr. Define X"t := Gc Y.

Step 5: Transfer normalization to object scores. Compute the eigenvalue decom-
position of ,f(t’~ t = LW2L’. Let St := J[’tLq~-l. Now st’s t = I.

Step 6: Convergence test. Compute the value of loss function (I) and check
whether the difference between the values at iterations t and t - 1 is smaller than some
predetermined criterion value, or whether a maximum number of iterations has been
reached. If so, stop. Otherwise, set t := t + 1, and go to Step 2.

If one uses rank-one restrictions (Girl, 1981) the component loadings aJ should also
be renormalized to insure that Step 2 always starts with a proper initialization. In this
case we add fiJ := ajt.KA-1 after Step 3, and we add aJ := gtJL~P after Step 5. Now, the
loss values will monotonically decrease, and so the algorithm converges to a minimum.

Test runs were carried out on an Amdahl V7B mainframe. For a data set with n =
118, m = 7, kj = 5 (j = 1 ..... m), p = 2, all variables of nominal level, and for
respectively k = 3 and k = 15, convergence occurs after about 0.09 respectively 0.32
seconds, excluding I/O operations. For ordinal levels, these figures are 0.13 and 0.48.

It is well known that the K-means algorithm does not guarantee the obtained
allocation tO be globally optimal. Using the above dataset with k = 3 and ordinal levels,
we found 5 different solutions in 100 testruns. The losses are: 1.232 (38), 1.235 (39),
1.237 (5), 1.243 (17) and 1.258 (1). The bracketed figures indicate the frequency 
solutions. Assuming that 1.232 represents the globally optimal solution, the average
number of misclassifications was found to be about 5% of the number of objects. The
category quantifications were only slightly different in the 5 solutions.
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FIGURE 1.
Joint plot of the unrestricted solution.

Example

The method was applied to a subset of the data given by Fienberg (1980, p. 130) 
10318 high school seniors. We selected 98 cases by rounding off the entire frequency
table divided by 100, and used four variables: intelligence (4 ordered categories), pres-
ence of college plans (2 categories), presence of parental encouragement (2 categories),
and social economic status (4 ordered categories).

As to the choice of p and k, with p < k, two approaches are possible. In the first
approach we choose p to be small, possibly aided by elbow or eigenvalue-greater-
than-unity criteria, and we vary k over a number of interesting values. This approach
is useful if one is interested in producing low-dimensional plots. In the other approach
we try to use as much discriminatory information as possible by setting p = k - 1,
provided that p <- max(p). The maximum dimensionality is max(p) = + P2,where

Pl = ~, (kj - 1) for all variables with unrestricted Yj and P2 is the number of variables
with a rank-one restriction on Yj.

Using the first approach, the eigenvalues of the p = 4 solution for the unrestricted
homogeneity analysis are 2.35, 0.74, 0.50, 0.41, so one- or two-dimensional solutions
give reasonably accurate descriptions of the data. Figure 1 depicts the two-dimensional
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FIGURE 2.
Joint plot of the restricted solution, three groups.

solution. A dot indicates the position of an object, or profile, as given by the rows of X.
The size of a dot corresponds with the number of objects on that location. We represent
each optimally scaled category by a triangle. Because in this analysis a variable is either
ordinal or binary, all categories of that variable are located on a line through the origin.
The solution is normalized according to Y~ YjGjGj Yj = I, and it satisfies the second
centroid principle, that is, objects are located in the centroid of their category scores.
The objects in Figure 1 form a bimodal cloud; in general, individuals on the left hand
side are characterized by having college plans and high IQ scores, by obtaining parental
encouragement, and by growing up in a moderate to high social economic environment.
The reverse pattern can be found for persons on the right hand side of the plot. Devi-
ations from these two dominant patterns make up the second dimension, where both IQ
and SES ac’count for the largest differences.

Suppose that we are interested in identifying a number of latent groups of objects
from these data. Choosing p = 2 and k = 3 provides an attractive GROUPALS solution,
with eigenvalues 2.09 and 0.46. Figure 2 shows the results. It shows three well sepa-
rated and tight clusters. Going from left to right for Cluster 1, 2 and 3, the sizes are
respectively 26, 27, and 45. It should be noted that all object points are plotted as if they
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were located in the category centroids (i.e., as given by Z in Step 3 of the algorithm),
although their optimal positions as measured by (2) are the cluster means. The possi-
bility to inspect Z, a low-dimensional continuous representation closest to the optimal
cluster solution, is a major practical advantage of GROUPALS.

The main differences between the two solutions concern the second dimension.
For the unrestricted solution, the variables IQ and SES contribute most to Dimension
2, but in the GROUPALS solution it is dominated by PLANS and ENCOURAGE. This
demonstrates the fact that (nonmetric) PCA and clustering procedures may yield quite
different results in terms of which variables are dominant in the reduced space. A closer
inspection of the groups reveals that Cluster 1 is completely identified by the categories
plans and encourage, Cluster 2 by no plans and encourage, and Cluster 3 by no plans
and no encourage. Figure 2 nicely illustrates this if we project each group on either the
ENCOURAGE or the PLANS axes. It turns out that the data set does not contain
profiles with combined scores on plans and no encourage, so IQ and SES account for
the entire within-groups variances. It is unlikely that we will find the same, optimal
partitioning if we use the unrestricted object configuration as the starting point for a
K-means analysis.

The resulting partition defines a latent categorical variable with k categories. This
variable may be used in subsequent analyses, for example as in loglinear or discrimi-
nant analysis, and the optimally scaled categories may aid in its interpretation.

Discussion

Starting from homogeneity analysis, restricting objects to be located at one of k
cluster points leads to a sum of squared distances criterion for estimating the unknown
group allocations. If all variables are nominal, and if we replace the unknown group
vector c by an observed variable, and then skip Step 4 of the algorithm, the solution
becomes equivalent to the forced classification procedure of Nishisato (1984), in which
one variable is made dominant by weighting. Thus GROUPALS can also be viewed as
a generalization of forced classification to the case of mixed variables.

A problem of the current program is that it is likely to produce local optimal
solutions, a property inherited from the combinatorial nature of the K-means algorithm.
As a temporary fix, the program has an option for rapidly generating a large number of
solutions, each beginning from a different starting partition. A more substantial alter-
native is to use mathematical programming techniques for finding the global optimum.
Some work has been done in this area (Arthanari & Dodge, 1981; Littschwager 
Wang, 1978), but we do not know whether these approaches are computationally fea-
sible for the present problem. In practice, it appears that the locally optimal partitions
do not differ to a great extent from the globally optimal one with respect to the obtained
quantifications, component loadings and cluster means.

The present approach can be generalized in several ways. Missing data may be
dealt with quite easily along the same lines as in homogeneity analysis, or by employing
the K-means algorithm to estimate missing scores. It is also possible to extend the
method to fuzzy clustering by dropping the restriction that Gc should be binary. How-
ever, it appears (Fisher, 1958; Gordon & Henderson, 1977) that the optimal fuzzy
partition is necessarily mutually exclusive, so such an extension would require addi-
tional changes in the loss function, as in Bezdek (1981). Another generalization is 
allow for spline transformations of the variables (Winsberg & Ramsay, 1982). This
would make the method slightly more complicated, but on the other hand, such a
procedure would not force the user to discard possibly relevant information by some
discretization process. The method may also be generalized to problems with a parti-
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tioning of the variables into sets, and to problems with a constrained partition or with
constrained cluster means, by introducing restrictions on respectively Yj, Gc and Y.
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