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Two new Bayesian item selection methods for CAT: 

Maximum Potential Impact (MPI) and Attraction Measure (AM) 

 

Abstract 

 

Two new Bayesian item selection methods for the use in CAT, Maximum Potential Impact 

(MPI) and Attraction Measure (AM), are introduced and compared with a popular current 

method, the Fisher information (FI) method. The MPI method can be used with any IRT 

model, the AM is specific to the Partial Credit Model. Extensive simulations showed that the 

three methods performed very similar. The FI method had a tendency to select polytomous 

items, and therefore usually required fewer items to reach certain reliability. The MPI and 

AM methods tended to favour dichotomous items, and the AM had smallest bias of the three 

methods, but at increased standard error. Also, the MPI and AM methods performed 

somewhat better for larger item banks, although requiring more items. Using a more 

informative item bank, like a polytomous item bank, had a positive influence on every aspect 

of performance of the MPI and AM methods. The AM method had a slightly advantage over 

both others when the test was stopped early, which makes the AM method attractive for 

applications where tests are very short. 
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1 Introduction 

 

Item selection is an essential component in Computerized Adaptive Testing (CAT). Several 

item selection criteria and methods have been proposed over the years. Classic methods are 

generally restricted to item banks that contain dichotomous items only, and only recently have 

attempts been made to select items from item banks with polytomous or mixed 

dichotomous/polytomous items. Dodd, De Ayala & Koch (1995) and Berger & Veerkamp 

(1997) provided methods for the polytomous case using the Fisher information function. Van 

Rijn, Eggen, Hemker & Sanders (2002) studied the performance of such methods.  

 

Van der Linden (1998) suggested Bayesian methods that might have superior properties. He 

introduced the notion of the preposterior distribution. In Bayesian analysis, the posterior is the 

distribution of the latent ability of an examinee after the examinee has given a response. The 

preposterior is almost the same, except for the fact that it is calculated for each possible 

response alternative before the examinee has responded. Thus, each response alternative has 

its own preposterior. The comparison of preposteriors provides the scientific basis for 

choosing among different items. Though the ideas were presented for the dichotomous case, it 

is straightforward to extend them to polytomous items.  

 

The present paper introduces two new item selection methods for polytomous data, both 

based on preposteriors. The first method is called Maximum Potential Impact (MPI). It is a 

general Bayesian method that does not depend on any particular psychometric model. The 

second method, called Attraction Measure (AM), relies on a specific property of the Partial 
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Credit Model (PCM; Masters, 1982). We evaluated the performance of both new methods in 

terms of bias and efficiency, and compared their properties to Fisher information (FI) method, 

arguably the most popular method for selecting items from polytomous item banks. 

 

The paper first introduces new methods, and then describes a simulation design used to 

evaluate their performance. This is followed by a presentation the results. The discussion 

summarizes the main results and provides some additional points. 

 

2 Item selection methods 

2.1 Preliminaries: Calculation of the preposterior density 

Let there be q > 1 candidate items (j = 1,..., q) in the item bank, each with mj > 1 response 

categories (k = 1,…, mj). Let ? denote the continuous trait to be measured. Two ingredients 

are needed for calculating the preposterior distribution for each response alternative k. First, 

we need to know how the probability of responding in each category varies with ?, i.e. 

P(Yj=k|?). This function is typically specified by the parameters of the IRT model used. 

Second, we need the current distribution of ability of an examinee, P(?). This is typically 

available from the previous examinee responses. If no items have yet been administered, P(?) 

can for example be taken as a uniform distribution over the interval [-10,+10]. 

 

The preposterior of response category k in item j is the distribution of ? when the examinee 

would answer that category. This can be calculated by Bayes rule as   
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evaluated on a grid of ?-values. Note that (1) is completely general and does not depend on a 

specific IRT model. There are mj preposteriors P(?|Yj=k), one for each category, and these 

represent the potential posterior proficiency that results if the examinee would answer 

response category k on item j.  

 

--- INSERT FIGURE 1 ABOUT HERE --- 

 

Figure 1 illustrates the key concepts. Suppose the item bank contains a four-category item 

with thresholds -1.776, -0.014 and 4.493 fitted according to the PCM. Figure 1a present the 

Item Characteristic Curves P(Yj=k|?) of this item. Note that at each ? the probabilities add up 

to 1. Suppose also that current ability distribution P(?) of the examinee is given by Figure 1b. 

The area under distribution is standardized to 1, so P(?) can be interpreted as a density. Figure 

1c contains the corresponding preposterior distributions according to equation (1). Also here 

the category preposteriors P(?|Yj=k) can be interpreted as densities. The preposterior density 

P(?|Yj=k) indicates how the current ability P(?) changes if the respondent would respond 

category k of item j.  A response in category 1 would sharpen the ability estimate and shift it 

slightly towards the left, whereas a response in category 4 would seriously alter both the 

location and the spread of the ability distribution. Observe that for this respondent a response 

in category 4 is very unlikely though. 
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2.2 Maximum Potential Impact (MPI) 

 

For a given P(?), we calculate the category preposteriors P(?|Yj=k) for all candidate items. 

Items whose category preposteriors are similar should not be selected because the ability 

distribution will hardly change as a result of the respondent's answer. We quantify the 

potential impact an item can have on the preposterior by the amount in which the mj 

preposteriors differ, i.e., larger between-category variation results in a higher selection 

probability. The method selects the item that has Maximum Potential Impact (MPI).  

 

Two complexities arise. First, note that the impact measure should account for the relative 

likelihood of each category as response probabilities will depend on P(?). Second, when 

dealing with mixed dichotomous/polytomous items banks, there should be some way of 

comparing items with a different number of categories.  

 

We address both difficulties analysis of variance on the mj preposterior densities, with group 

sizes depending on P(?). Let =θ̂  E[P(?)] be the Expected A Posteriori (EAP) estimate of ?, 

and let nk = nP(Yj=k|?=θ̂ ) be a virtual group size proportional to the expected probability of 

response k, with n > 1 taken as an arbitrary scaling constant representing 'total sample size'. 

Furthermore, define kµ  = E[P(?|Yj=k)] as the mean of the k'th preposterior, 2
kσ  = 

VAR(P(?|Yj=k) as its variance, and nn kk /∑= µµ  as the grand preposterior mean. Then 

SS(between) = ∑ − 2)( µµkkn  and SS(within) = ∑ − 2)1( kkn σ , so MS(between) = 

SS(between)/( mj - 1) and MS(within) = SS(within)/(n - mj). A convenient measure of impact 

is then F = MS(between) / MS(within). Under the usual assumptions of the F-test, this 
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measure follows an F-distribution with ( mj - 1) and (n - mj) degrees of freedom, so pj = F(mj - 

1, n - mj) is the associated significance level. The MPI method selects the item with smallest 

pj.  

 

We take the scaling constant as n = 50 for convenience. As long as n is much larger than k, 

the exact choice of n will not affect the relative order of F-values (or of their associated p-

values). Consequently, item selection is insensitive to the choice of n.  

 

2.3 Attraction Measure (AM) 

 

Under the Partial Credit Model and Bayes rule (1), the marginal probability of response 

category k under the current prior P(?) is proportional to the ratio of P(Yj = k|?) and P(?| Yj = 

k), i.e. 
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for any ?. This is a surprising but convenient property that allows us to calculate the expected 

marginal frequency distribution P(Yj=k) of item j under P(?). P(Yj=k) measures the 

attractiveness of each response category.  

 

The idea behind the Attraction Measure (AM) method is that items with a more homogeneous 

P(Yj=k) are more informative, and hence should obtain a higher priority of being selected. For 
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example, dichotomous items with P(Y=1) = P(Y=2) = 0.5 are more informative at P(?) than 

those with P(Y=1) ?  P(Y=2). The ideal distribution (1/mj) is defined as the one in which each 

response category has an equal probability of being selected. A convenient information 

measure is the variance among P(Yj=k), i.e., ∑ −=−= 22 ))/1()(())1/(1( jjjj mkYPmσ . The AM 

method selects the item the smallest 2
jσ .    

 

2.4 Fisher Information (FI) 

The Fisher information (FI) method is probably the most popular item selection methods. 

Lord (1980) seems to be the earliest reference. Under the Generalized Partial Credit Model 

(Muraki, 1992), the Fisher information of item j can be calculated as (Donoghue, 1994)  
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Setting aj =1 yields the Partial Credit Model. The FI method selects the item with largest Ij.  

 

3 Evaluation 

3.1 Simulation design 

A Monte Carlo simulation study was done to evaluate the performance of both new methods. 

Some conditions were common to all experiments. The EAP method (Bock & Mislevy, 1982) 

was used to estimate the latent ability. For dichotomous items, simulated item thresholds for 

dichotomous items were drawn from N(0, 2.5). Similarly, we use for three categories N(-1, 2) 
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and N(1, 2); for four categories N(-2, 1.5), N(0, 1.5) and N(2, 1.5); and for five categories N(-

2.25, 1.25), N(-0.75, 1.25), N(0.75, 1.25) and N(2.25, 1.25). Respondents were generated at 

eleven ability levels -5 through +5 with a grid size of 1. At each level, 500 respondents were 

generated, so each experimental condition was tested by N=5500 respondents. All 

calculations were done by customized programs in S-Plus 6.2. 

 

The following experimental factors were systematically varied:  

- Item selection method (M): Three item selection methods described in section 2 were 

implemented: MPI, AM and FI.  

- Size of the item banks (S): Three sizes of item bank were specified: 25, 50 and 100 

items. 

- Number of categories (C): The number of categories per item was specified as 2, 4 and 

as a mixture of items with equal numbers of 2, 3, 4 and 5 categories. The latter is 

called the mixed bank. 

- Termination rule (R): The test was terminated when ability was estimated with certain 

reliability ?. Three reliability levels were specified: 0.7 (low), 0.8 (medium) and 0.9 

(high). In practice, SE is the standard deviation (SD) of posterior distribution , and the 

test was terminated with SE’s smaller than 0.55, 0.45 and 0.32, which according to the 

relation ? = 1 – SE2 correspond to reliability levels of respectively 0.7, 0.8 and 0.9. 

 

Outcome variables were bias, standard error (SE) and number of items administered. Bias 

refers to the difference between the true and estimated ability. It is a measure of the accuracy 

of the estimation. For a sample of size N, bias is defined by 
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where rθ̂  is the EAP estimate for the rth replication and N is the number of replications. The 

SE is the spread among ability estimates, is a measure of the stability of the estimation, and 

defined as 
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3.2 Analysis 

 

The data from the experiment were analysed in several ways. For the purpose of the analysis, 

we derived a factor termed Distance (D) as the absolute distance to the midpoint (zero) of the 

scale. The levels of D consist of the consecutive integers between 0 and 5. In addition, we 

derived a factor termed Test Length (T) with 2 levels indicating that the CAT was terminated 

after a fixed number of 5 items (level 1) or 10 items (level 2). 

 

Several different ANOVA’s were carried out. We first concentrate on the differences between 

the three item selection methods at the beginning of the test. This is followed by similar 

analyses at the end of the test. Both comparative analyses are done only on the largest item 
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bank size (100). Next, the properties of the MPI and AM methods will be studied in more 

detail. 

 

For simplicity, three- and higher-way interactions are left out of the analyses. The sample 

sizes in the simulation are chosen in advance, so the traditional significance statistics are 

somewhat artificial, but can still be useful in tracing the relative order of effects. The effect 

size of a factor will be expressed in terms of ?2, the proportion of variance explained by all 

categories of the factor. Estimated means will be reported for selected main and interaction 

effects.  

 

4 Results 

4.1 Comparison of three methods 

 

--- INSERT TABLE 1 ABOUT HERE --- 

 

Table 1 displays the outcomes for the three methods of interest when the test is terminated 

after 5 or 10 items. For a short test of 5 items, the AM is less biased than the other two 

methods, at the expense of a larger SE. The effect persists at 10 items, though it is somewhat 

attenuated. 

 

--- INSERT TABLE 2 ABOUT HERE --- 
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Table 2 shows the same phenomenon for longer tests, but overall the differences between the 

three item selection methods are small. As in Table 1, Table 2 shows that the performance of 

the methods is quite similar for larger number of items. Note that the new MPI and AM 

methods require slightly more items than the FI method. An unexpected finding is that bias 

slightly increases as more items are administered. One possible explanation is that this occurs 

because the item bank becomes exhausted when it is used to assess people at the extremes of 

the scale. 

 

--- INSERT TABLE 3 ABOUT HERE --- 

 

Table 3 displays the results of the ANOVA using M, C, T and D as factors, under both fixed 

test length (5 or 10 items) and fixed test reliability (0.7, 0.8, 0.9) for the three outcome 

measures. The effect size ?2 for the M factor (0.016) and its interactions are small in 

comparison to the effect sizes of the other factors, so differences between item selection 

methods are comparatively small. There is an M×C interaction. Closer inspection of the data 

reveals that the three methods do not differ when a dichotomous item bank is used. This is 

reasonable because all item selection methods order the dichotomous items according to the 

distance between the prior mean and the item parameter. For polytomous and mixed item 

banks, the methods do not differ in SE’s, but as before, AM shows less bias after 

administering 5 items.  

 

The performance of MPI is generally in between that of AM and FI. For a stopping rule based 

on test reliability, the methods hardly differ in bias and SE, only in the number of items used. 

The FI method needs fewer items when a mixed item bank is used. In general, the AM shows 
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less bias at the extremes of the scale when 5 or 10 items are administered, at the expense of 

larger SE’s in the middle of the scale. For fixed test reliability, no differences related to 

distance from the mid point appear, except for the number of items used. The MPI and AM 

require more items than the FI method on all distances studied.  

 

--- INSERT TABLE 4 ABOUT HERE --- 

 

Table 4 shows a result with important practical implications. First observe that the FI method 

uses the smaller total number of items (25.4). Also, note that the Fisher exhibits a preference 

for items with more categories, whereas by contrast the MPI clearly favours dichotomous 

items. In general, the strategy employed by the FI method is the better one when the costs of 

answering a two-category item and a five-category item are equal. In that case, using FI is the 

more efficient. If however, the administration of dichotomous items is more efficient than 

polytomous items, the MPI method becomes more interesting. It may require more items, but 

the total administration time could still be shorter than the test selected by the FI. 

Furthermore, we found that the AM method generally has less bias than the other two 

methods, but has higher SE’s. The AM method may therefore be of interest in applications 

where small bias is more important than small SE’s. 

 

4.2 MPI: Detailed analysis 

 

--- INSERT TABLE 5 ABOUT HERE --- 
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The upper part of Table 5 shows the results of ANOVA with the MPI method. Distance to the 

midpoint of the scale is by far the most important factor for all outcomes accounting for 40.7 

%, 33.6 % and 25 % of the total variance respectively. The means of the different levels of D 

vary considerably, with the most favourable outcomes associated with small values of D. 

Thus, the method works best in the middle of the scale, which is consistent with other 

research (e.g., van der Linden, 1998; Wang & Wang, 2001; van Rijn et al, 2002). 

 

--- INSERT FIGURE 2 ABOUT HERE --- 

 

Figure 2 is helpful device in interpreting the ANOVA results. It displays the estimated means 

of each level of all main factors on the outcomes. An interesting result is that a higher 

specified reliability is not associated with bias. The relation between reliability and SE and 

number of items is as expected. Thus, a longer test will make the estimate more stable, but 

does do little to improve accuracy. In fact, Figure 2 suggests that using a longer test might 

even be harmful for accuracy.  

 

Donoghue (1994) showed that items with more categories are more informative in the sense 

that they reduce the standard error of the ability estimate. A rough measure of the 

informativeness of an item bank is the total number of the categories of the items. Therefore, 

we expect that an item bank consisting of polytomous items will have a better performance 

than an item bank with the same number of dichotomous items only. Figure 2 clearly 

illustrates this effect. The item bank with items of four categories (4 × 100 = 400) is most 

informative and performs best. The mixed item bank is also very informative (2 × 25 + 3 × 25 

+ 4 × 25 + 5 × 25 = 350) and the dichotomous item bank is least informative (2 × 100 = 200). 
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The differences between the mixed item bank and the item bank with items of four categories 

are small and only result in the mixed item bank requiring more items.  

 

Also, the size of the item bank (i.e., 25, 50 and 100) has an effect on the performance of the 

MPI method. The method performs better with larger item banks in terms of bias and SE, but 

requires more items than with a smaller item bank.  

 

Table 5 also contains interaction effects. Since not all of the effects are of immediate 

importance to the performance of MPI, the discussion of results will be limited to just a few 

interactions.  

 

The interaction between size of the item bank and distance (S × D) has the largest effect on 

the outcomes. This effect was not expected a priori. At the midpoint of the scale the 

performance of the item banks is similar. Although the larger item banks have more choice in 

items they perform equally well. Apparently having more choice only pays off primarily for 

ability levels further away from the midpoint. At three or more theta units away from the 

midpoint, the method using the larger item bank shows less bias, has smaller SE’s while using 

more items.  

 

Another substantial effect concerns the interaction between size of the item bank and number 

of categories (C × S). If the MPI method uses a smaller item bank, the dichotomous and 

mixed item bank show more bias, larger SE’s and require fewer items. More bias and larger 

SE’s is also shown for the item bank containing items with four categories when a smaller 
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item bank is used. However the number of items required is independent of size of the item 

bank.   

 

Apart from some unexpected effects discussed above, the MPI performs overall as expected 

in the specific situations.   

 

4.3 AM: Detailed analysis 

 

--- INSERT FIGURE 3 ABOUT HERE --- 

 

The lower half of Table 5 displays the ANOVA results for the AM method. In general, the 

results conform to those for the MPI method. Comparing Figure 2 and 3, it is clear that also 

the means of the levels of the factors are very similar. This also extends to the interaction 

effects, and indicates that the factors influence the performance of the MPI and AM in the 

same way. Thus, the results of the MPI method apply to the AM method as well.   

 

5 Discussion 

 

We proposed two new Bayesian item selection methods, both based on the preposterior. The 

new methods were compared with the method using Fisher information. Overall, all methods 

perform quite similar, but there are some small differences. The FI has a tendency to select 

polytomous items and therefore usually requires fewer items to reach certain reliability. The 

MPI and AM tend to favour dichotomous items, and the AM has smallest bias of the three 
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methods, but at increased standard error. Also, the MPI and AM perform somewhat better for 

larger item banks, although requiring more items. Using a more informative item bank, like a 

polytomous item bank, had a positive influence on every aspect of performance of the MPI 

and AM. This corresponds to other research where item selection methods were tested with 

different item banks.  

 

As noted, there is a trade off between the accuracy and the stability of the estimate. The AM 

method is less biased than the MPI and FI at the beginning of the test, but with larger standard 

errors. This trade off appears to be related to the number of categories of the selected items. 

The AM and MPI methods prefer dichotomous items. Apparently, using dichotomous items 

restricts the estimate less than polytomous items, i.e., dichotomous items only pull the 

estimate towards one side of the scale. In contrast, polytomous items work more on a range of 

the scale and the estimate increases more in stability than with dichotomous items. Thus, if a 

quick assessment of the extremes of the scale is needed, using dichotomous items employing 

the AM may be preferred. On the other hand, a reasonable across-the-board estimate could 

better be made by administrating polytomous items with the FI method. 

 

Although we have tried to design a realistic experiment, things might turn out differently in 

practice. The estimation of the item parameters based on real data is never free of error. 

According to van der Linden & Glas (2000) the errors in item parameters can have a negative 

effect on CAT estimation. The present study assumed that the item parameters were true. We 

feel though that the simulation study gives a good indication of the relative performance of 

item selection methods. In a real situation, an examinee can give deviating answers at the 
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beginning of the test, because the examinee may need to adjust to taking a CAT. Such effects 

could not be incorporated in the study entirely, but need careful attention in practice.  

 

It would be interesting to compare the performance of the methods using real data. We think 

it is important to examine the performance of the MPI and AM methods more thoroughly, 

because both may have practical advantages over the FI method. The MPI method can be 

used for any IRT model, and thereby eases the use of item banks made with other IRT 

models. On the other hand, the MPI needs more computational time than either the FI or the 

AM methods. Another point of interest is the hybrid methods. Perhaps, results could improve 

by starting with a couple of dichotomous items to get a rough assessment, before using 

polytomous items.  

 

The simulation study is quite broad. It not only addresses three different item selection 

methods, but also deals with several factors that influence the performance of CAT. We found 

that the two new Bayesian item selection methods are performing as well as the FI method. 

We look forward to apply these methods in practice.  
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Table 1: Mean bias and SE of three item selection methods after a fixed test 
length of 5 and 10 items for an item bank size of 100. 

Fixed Test Length Method Bias SE 

5 items MPI 0.132 1.00 
 AM 0.098 1.07 
 FI 0.148 0.94 
    
10 items MPI 0.080 0.64 
 AM 0.073 0.68 
 FI 0.079 0.62 
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Table 2: Mean bias, SE and number of items needed of three item selection 
methods under various stopping rules for an item bank size of 100. 
Fixed Test 
Reliability 

Method Bias SE Number of items 
administered 

0.7 MPI 0.030 0.53 16.7 
 AM 0.027 0.54 16.7 
 FI 0.029 0.53 15.3 
     
0.8 MPI 0.034 0.46 27.9 
 AM 0.027 0.46 27.9 
 FI 0.034 0.46 26.2 
     
0.9 MPI 0.041 0.37 55.2 
 AM 0.040 0.36 54.1 
 FI 0.040 0.36 52.4 
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Table 3: Proportion explained variance per effect from ANOVA for early 
(fixed length) and late termination rules (fixed reliability). The item bank 
size is 100. 

Stopping rule Effect DF bias SE # items 
      
Fixed length - Main Effects     
 Methods (M) 2 .010 .016 - 
 Categories (C) 2 .077 .292 - 
 Test Length (T) 1 .047 .369 - 
 Distance (D) 5 .303 .164 - 
 - Interactions     
 M × C 4 .008 .037 - 
 M × T 2 .006 .003 - 
 M × D 10 .018 .004 - 
 Error 171    
      
Fixed reliability - Main Effects     
 Methods (M) 2 .001 .000 .001 
 Categories (C) 2 .088 .086 .181 
 Reliability (R) 2 .008 .044 .280 
 Distance (D) 5 .327 .218 .373 
 - Interactions     
 M × C 4 .001 .002 .001 
 M × R 4 .000 .000 .000 
 M × D 10 .002 .002 .000 
 Error 267    
      
 = statistically significant     
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Table 4. Selection of items from a mixed item bank. Given are the total 
number of items administered (bottom row) and the breakdown into the 
number for 2, 3, 4 and 5-category items. 

Categories MPI AM FI 
2 9.9 8.8 3.6 
3 8.5 4.9 4.9 
4 6.6 6.5 6.5 
5 5.9 9.3 10.4 
    
Total 30.9 29.5 25.4 
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Table 5. Proportion explained variance per effect from ANOVA for the MPI 
and AM item selection methods. 

Method Effect DF bias SE # items 
      
MPI - Main Effects     
 Categories (C) 2 .067 .127 .128 
 Item bank Size (S) 2 .083 .139 .060 
 Reliability (R) 2 .000 .046 .177 
 Distance (D) 5 .407 .336 .250 
 - Interactions     
 C × S 4 .022 .038 .034 
 C × R 4 .000 .004 .002 
 C × D 10 .096 .050 .004 
 S × R 4 .000 .006 .069 
 S × D 10 .149 .090 .100 
 R × D 10 .002 .006 .009 
 Error 243    
      
AM - Main Effects     
 Categories (C) 2 .064 .122 .135 
 Item bank size (S) 2 .098 .140 .060 
 Reliability (R) 2 .000 .049 .172 
 Distance (D) 5 .383 .335 .240 
 - Interactions     
 C × S 4 .028 .047 .036 
 C × R 4 .000 .004 .002 
 C × D 10 .082 .042 .004 
 S × R 4 .000 .007 .064 
 S × D 10 .140 .100 .093 
 R × D 10 .003 .006 .010 
 Error 243    
      
 = statistically significant     
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Figure 2 
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Figure 3 
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Figure captions 
 
 
 
Figure 1: Illustration of the preposterior distributions for the categories of a polytomous item. 
 
Figure 2. Means of every level of the main factors on the outcomes bias, SE and number of 
items administered for the ANOVA for the MPI method. 
 
Figure 3. Means of every level of the main factors on the outcomes bias, SE and number of 
items administered for the ANOVA for the AM method. 
 

 


