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Abstract

Many longitudinal studies collect data that have irregular observation times, often
requiring the application of linear mixed models with time-varying outcomes. This paper
presents an alternative that splits the quantitative analysis into two steps. The first step
converts irregularly observed data into a set of repeated measures through the broken stick
model. The second step estimates the parameters of scientific interest from the repeated
measurements at the subject level. The broken stick model approximates each subject’s
trajectory by a series of connected straight lines. The breakpoints, specified by the user,
divide the time axis into consecutive intervals common to all subjects. We restrict the
methodology to just three variables: time, measurement and subject. The model is a
special case of the linear mixed model, with time as a linear B-spline and with subject as
the grouping factor. The main assumptions are: Subjects are exchangeable, trajectories
between two breakpoints are all straight, random effects follow a multivariate normal
distribution, and unobserved data are missing at random (MAR). The brokenstick R
package offers tools to calculate, predict, impute and visualise broken stick estimates. The
package supports two optimisation methods, including options to constrain the variance-
covariance matrix of the random effects. We demonstrate a few applications of the model:
detection of critical periods, estimation of the time-to-time correlations, profile analysis,
curve interpolation, multiple imputation and personalised prediction of future outcomes
by curve matching.

Keywords: brokenstick, R, linear mixed model, repeated measures, linear B-spline, person-
alised estimation, growth curve analysis, critical periods, time-to-time correlation, profile
analysis, curve interpolation, multiple imputation, curve matching, two-step method.

1. Introduction

Most longitudinal studies plan data collection to occur at a fixed set of time points. In
practice, the realised times can differ - sometimes substantially - from the scheduled times.
There may be many reasons for such differences. For example, we planned a visit in the
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weekend or during a holiday, the subject didn’t show up, the measurement device was out of
order, or the investigator got ill. Varying observation times may also result from combining
data from multiple studies, each collected according to its own design. Timing variation can
be substantial in observational studies, especially if the survey lacks a pre-specified schedule.
Longitudinal data with timing differences between subjects are said to be irregular.

Irregular observation times present significant challenges for quantitative analysis. For ex-
ample, it isn’t easy to calculate the time-to-time correlation matrix if the data spread thinly
over time. It might also be complex to predict the future from past data if subject times
differ. Observation times may also relate to the process of interest. For example, more severe
patients get more frequent measurements; unmotivated cohort members respond more rarely,
and so on. Conventional methods like MANOVA, regression or cluster analysis break down
if observation times differ or if drop-out is selective.

While irregular observation times occur all over science, there is no universal or principled
approach to resolve the problem. One straightforward fix is to take only those dates for
which data are available (e.g., dates when stocks are traded), thus ignoring the times when
markets are closed. One may also create bins of time intervals around the planned times,
thereby ignoring within-period differences. Another ad-hoc method is to predict the value at
the scheduled time from neighbouring data, e.g. by linear interpolation or smoothing, typi-
cally reducing the variability in the data. Some quick fixes create data sets where the timing
problem seems to have “gone away”, which may tempt the analyst to ignore the potential ef-
fects of data patch-up on the substantive conclusions. While convenient and straightforward,
the thoughtless application of these fixes introduces significant spurious relations over time,
especially if the spacing of observations is highly irregular.(Rehfeld, Marwan, Heitzig, and
Kurths 2011) Binning can lead to “surprisingly large” biases.(Towers 2014) If timing varia-
tion is related to the outcome of interest, these methods may result in biased estimates and
exaggerated claims.(Pullenayegum and Lim 2016)

The linear mixed model for longitudinal data (Laird and Ware 1982; Fitzmaurice, Laird, and
Ware 2011) is the standard for the analysis of irregular data. The longitudinal mixed model
represents each subject’s observed curve by a parametric function of time. The parameter
estimates of the function are specific to each subject and modelled as random effects. The
linear mixed model is highly useful for irregular data since it borrows strength across different
realisations of the same process, summarising each trajectory by a small number of parameters
that vary over subjects. The analyst can break down the distribution of these random effects
as a function of individual characteristics. The linear mixed model is attractive when the
number of measurements differs between individuals, or when the measurements are taken at
different times.

This paper explores the use of the broken stick model as a method to transform irregularly
observed data into repeated measures. The broken stick model describes a curve by a series of
connected straight lines. The model has a long history and is known under many other names,
amongst others, segmented straight lines (Bellman and Roth 1969), piecewise regression (Toms
and Lesperance 2003), structural change models (Bai and Perron 2003), broken line smoothing
(Koutsoyiannis 2000) and segmented regression (Lerman 1980). The term broken stick goes
back to at least MacArthur (1957), who used to it in an analogy to indicate the abundances
of species. Most of the literature on the broken stick model concentrates on the problem
of finding optimal times at which the lines should connect. Instead, the present paper will
focus on the problem of summarising irregular individual trajectories by estimates made at
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a pre-specified time grid. This time grid is identical for all individuals, but it needs not to
be equidistant. Our model formulation is a special case of the linear mixed model, with
time modelled as a set of random effects coded as a linear B-spline and with subjects as the
grouping factor. The output of the transformation is a set of repeated measures, where every
subject obtains a score on every time point.

Substantive researchers often favour repeated measures over the use of linear mixed mod-
els because of simplicity. For example, with repeated measures data, we can easily fit a
subject-level model to predict future outcomes conditional on earlier data. While such simple
regression models may be less efficient than modelling the full data (Diggle, Heagerty, Liang,
and Zeger 2002, Sec. 6.1), increased insight may be more valuable than increased precision.

The broken stick model requires a specification of a sensible set of time points at which
the measurements ideally should have been taken. For each subject, the model predicts
or imputes hypothetical observations at those times. We apply the substantive analysis to
the repeated measures instead of to the irregular data. This strategy is akin to Diggle’s
multi-stage approach model-fitting approach (Diggle 1988). The envisioned two-step analytic
process aims to provide the best of both worlds.

Some applications of the broken stick model are:

� to approximate individual trajectories by a series of connected straight lines;
� to align irregularly observed curves to a common age grid;
� to impute realisations of individual trajectories;
� to estimate the time-to-time correlation matrix;
� to predict future observations.

My original motivation for developing the broken stick model was to facilitate the statistical
analysis and testing of critical ages in the onset of childhood obesity (de Kroon, Renders, van
Wouwe, van Buuren, and Hirasing 2010), with extensions to multiple imputation (van Buuren
2018). Anderson, Hafen, Sofrygin, Ryan, and HBGDki Community (2019) recommend the
broken stick model because of good accuracy and ease of interpretation.

The present paper highlights various computational tools from the brokenstick package. The
package contains tools to fit the broken stick model to data, to export the parameters of
the fitted model for use outside the package, to create imputed values of the model, and to
predict broken stick estimates for new data. Also, the text illustrates how the tool helps to
solve various analytic problems.

2. Illustration of broken stick model

As a first step, let us study the variation in the age of measurement of 200 children from the
SMOCC study (Herngreen, van Buuren, van Wieringen, Reerink, Verloove-Vanhorick, and
Ruys 1994). Lokku, Lim, Birken, Pullenayegum, and TARGet Kids! Collaboration, (2020)
suggest the abacus plot to visualise this variation.

The blue points in Figure 1 indicate the observation times. In general, the blue points are
close to the scheduled ages (indicated by vertical lines), especially in the first half year.
Observation times vary more for older children. Several children have one or more missing
visits (e.g. 10002, 10008, 10024). Some children (10012, 10015) had fairly close visits. Child
10028 dropped out after month 9.
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Age (in months)

10028
10026
10025
10024
10023
10022
10018
10017
10015
10014
10013
10012
10009
10008
10007
10006
10005
10004
10003
10002
10001

b 4w8w 3m 6m 9m 12m 15m 18m 24m

Figure 1: Abacus plot of observation times for the first 20 children of the SMOCC data.

Let us fit two models, with two and nine lines respectively, to the standard deviation score
(SDS) of body length.

R> ids <- c(10001, 10005, 10022)

R> fit2 <- brokenstick(hgt.z ~ age | id, smocc_200, knots = 0:3)

R> knots <- c(0, 0.0833, 0.1667, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2)

R> fit9 <- brokenstick(hgt.z ~ age | id, smocc_200,

+ knots = knots, boundary = c(0, 3))

R> m2 <- plot(fit2, smocc_200, group = ids,

+ xlab = "Age (years)", ylab = "Length (SDS)")

R> m9 <- plot(fit9, smocc_200, group = ids,

+ xlab = "Age (years)", ylab = "Length (SDS)")

R> gridExtra::grid.arrange(m2, m9, nrow = 2)

Figure 2 shows the individual trajectories of three children. The blue points coincide with the
observed data, whereas the red curves are calculated according to the broken stick model.

There are fitted two models. The simpler model (top) uses just two line segments. The first
line starts at birth and ends at the age of exactly 1 years. The second line spans the period
between 1 to 2 years. Note that the two lines connect at the breakpoint, the age of 1 year.
The red curves for the two-line model are a crude approximation to the data.

We can create a better model by setting breakpoints equal to the scheduled ages. Since there
are 10 scheduled ages, we construct nine straight lines. In contrast to the two-line model, the
nine-line broken stick model is sensitive to small bumps in the observed trajectory and closely
fits the empirical data. The residual variance of the nine-line model is low (0.059), and the
proportion of explained variance in SDS is high, 0.98.
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Figure 2: Broken stick model with two (top) and nine (bottom) line segments for three
children. Blue = observed data, Red = Fitted broken stick curves.
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While the observation times in the data differ between children, the broken stick curves use
identical time points across subjects. The idea is now that we can add the broken stick
estimates to the child-level data by a long-to-wide conversion, and analyse supplemented
columns as repeated measures. A repeated measures analysis is usually simpler than the
equivalent for the temporally misaligned data. For example, it is easy to calculate mean
profiles for arbitrary groups, estimate the time-to-time covariance matrix or to build predictive
models at the child level. See Hand and Taylor (1987) for a lucid overview of linear techniques
for repeated measures.

3. Methodology

3.1. Notation

We adopt the notation of Fitzmaurice et al. (2011). Let Yij denote the response variable for
the ith subject on the jth measurement occasion at time tij . Data are collected in a sample
of N persons i = 1, . . . , N . Let repeated measurements for the ith subject be grouped as

Yi =


Yi1
Yi2
...
Yini

 , i = 1, . . . , N.

If the measures have been observed at a common same set of occasions, then we could drop
the index i in tij since tij = tj for all i = 1, . . . , N . Here we will focus on the case that tij
varies over i.

In addition, let use define the ni × p matrices

Xi =


Xi11 Xi12 · · · Xi1p

Xi21 Xi22 · · · Xi2p
...

...
. . .

...
Xini1 Xini2 · · · Xinip

 , i = 1, . . . , N,

so that the rows of Xi contain p covariates associated with the responses at ni measurement
occasions. The columns may be time-varying covariates. If a certain covariate is fixed in time
(e.g. sex, treatment, education), then all values within the corresponding column in Xi are
identical.

3.2. Broken stick model

The broken stick model avoids modeling observation times tij directly by representing each
tij as its relative position within a time interval. For example, suppose tij = 0.6 years and
that the time interval is given by 0.5-1.0 years. The position relative to the left break age
is xleft = (1.0 − 0.6)/(1.0 − 0.5) = 0.8, whereas relative to the right break age is xright =
(0.6− 0.5)/(1.0− 0.5) = 0.2. In order to fit the broken stick model, we need to replace time
point tij = 0.6 by two values: 0.8 (for break age 0.5), and 0.2 (for break age 1.0). Note that
both values add up to 1. Coding time in this way simplifies modeling continuous time by a
set of discrete break ages.
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More specifically, let tij be coded by a second-order (linear) B-spline using k internal knots κ
placed at k + 1 ordered ages

κ0 = κ1 < · · · < κk < κk+1

The internal knots κ1, . . . , κk correspond to the set of ages for which we obtain broken stick
estimates, and it could be specified by the user. The left boundary knot κ0 = κ1 is left-
anchored to the minimum time min(tij) in the data. This point defines the starting event
of the participant, such as birth or study enrolment. The right hand boundary knot is
κk+1 ≥ max(tij).

The second-order B-spline (de Boor 1978, pp. 32),

Hs(t) =


(t− κs−1)/(κs − κs−1) , κs−1 < t ≤ κs,
(κs+1 − t)/(κs+1 − κs) , κs ≤ t < κs+1,
0 , otherwise.

is applied to tij to obtain (k + 1) transformed variables xis = tij with s = 1, . . . , k + 1.
These variables can conveniently be grouped into the ni × (k + 1) matrix of covariates Xi =
(xi1, . . . , xik, xi(k+1)). Each row in Xi has only one or two non-zero elements, which sum to
1.

Using this Xi, the broken stick model is a special case (with Zi = Xi) of the two-stage
random-effects model (Laird and Ware 1982)

Yi = Xiβ +Xibi + εi

where the k+1 column vector β contains k+1 fixed effect coefficients common to all persons,
where the k + 1 column vector bi accomodates for k + 1 subject-specific random parameters,
and where the ni column vector εi holds subject-specific residuals.

In order to complete the model specification, we assume that the residuals are identically
and independently distributed as εi ∼ N(0, σ2I(ni)), where σ2 is a common variance pa-
rameter, and where I(ni) is the identity matrix of order ni. Thus, the equation represents
population parameters (fixed effects), individual effects (random effects), and an amount of
within-person dispersion that is the same for all persons. The section on estimation also
considers a heterogeneous model that allows σ2i to vary over subjects.

In summary, given the knot specification and the choice of the response scale, the parameters
of the broken stick model are:

� β, a vector of k + 1 fixed parameters;
� Ω, a (k + 1)× (k + 1) covariance matrix of the random effects;
� σ2, the within-person error variance.

The total number of parameters for a solution with k internal knots is thus equal to (k2+5k+
6)/2. For example, a model of k = 3 knots (i.e. with two connected lines) has 15 parameters, a
model with k = 4 has 21 parameters, and a model with k = 10 break ages has 78 parameters.

3.3. Model assumptions

At the person level, we assume bi ∼ N(0,Ω), i.e., the random coefficients of the subjects
have a multivariate normal distribution with zero mean and a (k + 1) × (k + 1) covariance
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matrix Ω. The base model allows the elements of Ω to vary freely. For time-dependent data,
constrained versions for Ω are also of interest.(Fitzmaurice et al. 2011, ch. 7). The estimation
section highlights two such extensions. We also assume that the covariance between bi and εi
is zero. For simplicity, this paper is restricted to the case where Xi includes only time, and
no other covariates. Also, we assume that Xi has no missing data.

The broken stick model builds upon three main modeling assumptions:

� The trajectory between break ages follows a straight line. This assumption may fail
for processes that are convex or concave in time. For example, human height growth
in centimeters growth is concave, so setting breakpoints far apart results introduces
systematic model bias. Modeling height SDS instead of raw height will prevent this
bias.

� The broken stick estimates follow a joint multivariate normal distribution. As this
assumption may fail for skewed measurements, it could be beneficial to transform the
outcomes so that their distribution will be closer to normal.

� The data are Missing at Random (MAR) given the outcomes from all subjects at all
observation times. This assumption is restrictive in the sense that missingness may
only depend on the observed outcomes, and not on covariates other than time. At the
same time, the assumption is liberal in the sense that the missingness may depend on
future outcomes. While this MAR-future assumption is unusual in the literature on
drop-out and observation time models, it is a sensible strategy for creating imputations
that preserve relations over time, especially for intermittent missing data. Of course,
the subsequent substantive analysis on the imputed data needs to be aware of the causal
direction of time.

3.4. Interpretation

Given the model estimates and the person data, we can calculate the random effect bi. The
broken stick parameter γis = βs + bis is the subject-specific mean of Yi at time κs, s =
1, . . . , k + 1. The set of γis parameters describes the mean response profile for subject i by k
lines that connect at the k + 1 coordinates (κs, γis).

The broken stick parameter is the most likely value of outcome Yi for subject i at time κs. The
parameter is the centre of the posterior predictive distribution for normal Yi. The two-sided
100(1− α)% prediction interval for the true, though often unobserved, value Yi,κs is equal to

[Y lo
i,κs , Y

hi
i,κs ] = γis ± t(1−α/2;N−1)σ,

where t(1−α/2;N−1) is the 100(1 − α/2) percentile of Student’s t-distribution with N − 1 de-
grees of freedom. For example, the 50% prediction interval γis ± 0.68σ will contain 50% of
true values. For normal Yi, the length of the 50% prediction interval is equivalent to the in-
terquartile range (IQR). If the residual variation σ2 is small (say σ2 < 0.1), the IOR is about
0.22, so half of the true values will be within 0.22 SD of γis, a small difference. For large σ2

(e.g. σ2 > 0.2), the γi vector is a smoothed representation of Yi. While smoothness amplifies
low-frequency features of the trajectories, it could also introduce biases in the subsequent
analysis by suppressing high-frequency variation. In that case, the analyst needs to check
whether this reduction in variation does not affect the parameters of substantive interest. We
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may restore high-frequency variation by adding random draws from the residual distribution
N(0, σ2). From there, it is a small step to multiple imputation, a well-developed methodology
for drawing valid inferences from incomplete data.(Rubin 1987; van Buuren 2018)

If ni >> k then the broken stick model provides a parsimonious representation of the mea-
surements. Reversely, if ni << k then the model infers plausible values for subject i by
building strength across persons. The broken stick model converts ni irregularly observed
measurements into a new set of k values γis at common ages κ1, ..., κk, s = 1, . . . , k.

Since each row in Xi sums to unity, the broken stick model does not have a global intercept.
The linear B-spline coding effectively replaces the global random intercept term by k+ 1 local
intercepts, one at each break age. The local intercept summarizes the information available in
the adjacent left and right age intervals and ignores any information beyond the two adjacent
knots. The broken stick estimates are thus primarily local. Outcome data observed outside
the two adjacent age intervals influence the broken stick estimates only through the subject-
level part of the model, in particular through Ω.

3.5. Estimation

Parameter estimation, method lmer

Estimation of the broken stick model relies on two well-developed R functions: splines::bs()
(R Core Team 2020) and lme4::lmer().(Bates, Mächler, Bolker, and Walker 2015) The
following snippet illustrates how the brokenstick::make.basis() function calculates the
matrix of B-splines for the time variable age:

R> library(splines)

R> data <- brokenstick::smocc_200

R> brk <- c(0, 0.5, 1, 2)

R> X <- bs(data$age, knots = brk, Boundary.knots = c(0, 3), degree = 1)

R> colnames(X) <- paste("age", c(brk, 3), sep = "_")

R> data <- cbind(data[, c("id", "age", "hgt.z")], X)

R> head(data)

id age hgt.z age_0 age_0.5 age_1 age_2 age_3

1 10001 0.000 0.57 1.00 0.00 0.0000 0 0

2 10001 0.082 0.89 0.84 0.16 0.0000 0 0

3 10001 0.159 0.80 0.68 0.32 0.0000 0 0

4 10001 0.255 0.66 0.49 0.51 0.0000 0 0

5 10001 0.504 0.29 0.00 0.99 0.0076 0 0

6 10001 0.753 -0.40 0.00 0.49 0.5058 0 0

The numerical example shows that the bs() function transforms the age variable into five
columns, the B-spline basis, with names like age_0 and age_0.5. If age coincides with one of
these (e.g., as in the top row), then the corresponding column receives a 1. In all other cases,
age distributes over two adjacent columns. To make things fit, we need an additional column
(here age_3) at the last position, the right boundary knot. There is also a left boundary
knot, and I have conveniently set that equal to the first breakpoint, marking the start of



10 Broken Stick Model for Irregular Longitudinal Data

time. Setting degree = 1 specifies a B-spline gives the broken stick model its name and its
characteristic shape.

To illustrate the second step of the calculations, we call lme4::lmer() as follows:

R> library(lme4)

R> ctl <- .makeCC("warning", tol = 4e-3)

R> f <- hgt.z ~ 0 + age_0 + age_0.5 + age_1 + age_2 + age_3 +

+ (0 + age_0 + age_0.5 + age_1 + age_2 + age_3 | id)

R> fit <- lmer(f, data,

+ control = lmerControl(check.conv.grad = ctl))

R>

R> ### fitted trajectories for all persons

R> bse <- t(t(ranef(fit)$id) + fixef(fit))

R> head(round(bse, 3), 3)

age_0 age_0.5 age_1 age_2 age_3

10001 0.78 0.27 -0.01 0.076 0.11

10002 -0.28 -0.21 -0.46 -0.478 -0.10

10003 1.68 1.97 1.28 1.115 -0.89

The broken stick estimates are the sum of the fixed and random effects. We need to remove
the intercept as predictor rows all sum to 1. Warnings often occur when fitting broken stick
models with lme4::lmer(). Here we have surpressed the warning ## Warning in check-

Conv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model failed to

converge with max|grad| = 0.0031397 (tol = 0.002, component 1) by setting tol to
a more relaxed value. I have found that the broken estimates still look sound and reasonable.
Most of my experience derives for child growth data, so there is no guarantee that this appar-
ent robustness will hold for other types of data. Warnings become less frequent for a lower
number of breakpoints and larger samples sizes.

The brokenstick package can fit the same model in an easier way:

R> ctl <- control_brokenstick(

+ lmer = lmerControl(check.conv.grad =

+ .makeCC("warning", tol = 4e-3)))

R> mod <- brokenstick(hgt.z ~ age | id, data = smocc_200,

+ knots = c(0, 0.5, 1, 2), boundary = c(0, 3),

+ control = ctl)

R> head(predict(mod, smocc_200, x = "knots", shape = "wide"), 3)

# A tibble: 3 x 6

id ‘0‘ ‘0.5‘ ‘1‘ ‘2‘ ‘3‘

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 10001 0.778 0.272 -0.00986 0.0760 0.107

2 10002 -0.278 -0.206 -0.460 -0.478 -0.101

3 10003 1.68 1.97 1.28 1.11 -0.892
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Parameter estimation, method kr

The calculation time of lme4::lmer() rapidly increases with the number of random ef-
fects. More than ten random effects (knots) takes significant time, and beyond 15 knots
is generally impossible to fit. The brokenstick package provides another alternative, the
Kasim-Raudenbush (KR) sampler (Kasim and Raudenbush 1998), which simulates draws
from the posterior distributions of parameters from a two-level normal model with heteroge-
neous within-subject variances. The speed of the KR-Raudenbush sampler is almost insensi-
tive to the number of random effects and depends primarily on the total number of iterations.
The brokenstick::kr() function provides some reasonable defaults. The behaviour of the
method has not been studied as well as lmer() and should still be considered experimental.

Apart from being faster, the KR-sampler opens up interesting analytic options:

1. It is relatively easy to constrain the fitted covariance of random effects, Ω, to a matrix of
simple structure. Informing the sampler of the time-dependent structure of the random
effect leads to stabler estimates of Ω. The package currently implements two correlations
models. These models express the correlation ρ(t1, t2) between two Z -scores Z1 and Z2

at successive ages t1 and t2 as a function of those ages. The Argyle model (Argyle,
Seheult, and Wooff 2008) is ρ(t1, t2) = exp(−λ|T1 − T2|), where Ti = log(τ + ti) is a
logarithmic rescaling of the time axis and ρ = exp(−λ). The Cole correlation model
(Cole 1995) describes the Fisher-transformed correlation as a function of the average
(t1 + t2)/2 and the difference (t2 − t1), including two multiplicative terms. Note that
both models were proposed in the context of child growth, and have not been tested for
other types of time-dependent data.

2. The KR-sampler fits the slightly more general linear-mixed model with heterogeneous
within-subject variances, i.e. with a residual variance σ2i per subject i instead of the
global residual σ2. This makes it easier to identify, study and weight subjects based on
how well they fit the model.

3. A third option is to simulate imputations as an extra step to the KR-sampler. For
subject with large σ2i , the random effect estimates are a too smooth representation of
the data, leading to inappropriate variance estimates when those estimates are analysed
as “just data”. Section 11.3 of van Buuren (2018) pioneered a solution that constructs
multiple trajectories by adding a proper amount of residual noise to random effect
estimates. The variance estimation then proceeds according to the principles of multiple
imputation.(Rubin 1987)

Random effects estimation

Apart from parameter estimates of the broken stick model, we also need a way to estimate
random effects for a given set of model estimates and (new) user data. There are several
of such methods. The brokenstick::EB() function implements the empirical Bayes (EB)
estimate, also known as BLUP (Skrondal and Rabe-Hesketh (2009), p. 683). The procedure
can provide the broken stick estimates for new persons. It the workhorse of the more user-
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friendly predict() method that takes fitted models objects.

4. Functionality

4.1. Overview of brokenstick package

The brokenstick package contains functions to fit, predict and plot data. The main functions
in the brokenstick package are:

Function name Description

brokenstick() Fit a broken stick model to irregular data
predict() Predict broken stick estimates for new data
plot() Plot individual trajectories

The following functions are user-oriented helpers:

Function name Description

fitted() Calculate fitted values
get_knots() Obtain the knots used by model
get_r2() Obtain proportion of explained variance
residuals() Extract residuals from model

The following functions are responsible for calculations:

Function name Description

control_brokenstick() Set controls to steer calculations
EB() Empirical Bayes predictor for random effects
kr() Kasim-Raudenbush sampler for two-level model
make_basis() Create linear splines basis

The package follows the tidymodels conventions. For example, the modelling object does not
store the training data, whereas the convention dictates the variable names. The package
architecture borrows important ideas from the hardhat package.(Vaughan and Kuhn 2020)

4.2. Data preparation

Before we can fit the model, the data need to be in shape. Data preparation is often the
most time-consuming part of the analysis. The brokenstick() function takes tidy data in
the long-form, with every observed subject-time combination in a row. This section uses the
built-in smocc_200 data, containing the heights of 200 children measured at ten visits up to
two years.(Herngreen et al. 1994)

R> library(brokenstick)

https://tidymodels.github.io/model-implementation-principles/
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R> head(smocc_200, 3)

# A tibble: 3 x 7

id age sex ga bw hgt hgt.z

<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>

1 10001 0 female 40 3960 52 0.575

2 10001 0.0821 female 40 3960 55.6 0.888

3 10001 0.159 female 40 3960 58.2 0.797

4.3. Calculate Z-scores

The broken stick model can fit observations in either the raw scale (cm, kg, and so on) or as
a standard deviation score (SDS), or Z-score. The results from the analysis of the Z-score is
preferable for several reasons:

1. for growth curves, a straight line assumption is more plausible in the Z-score scale;
2. observations in the Z-score scale are closer to multivariate normality;
3. analysis of Z-scores highlights the interesting variation within and between children;
4. fitting Z-score data leads to fewer convergence issues.

It is easy to convert the measurements into the Z-score scale, fit the model, and convert
back to the raw scale afterwards, if desired. There are several R packages that assist in the
calculations: AGD, anthro, childsds, growthstandards and zscorer.

The smocc_200 data contains the height measurement both in the original scale in cm (hgt)
and the Z-score scale (hgt.z) relative to the height references from the Fourth Dutch Growth
study (Fredriks, van Buuren, Burgmeijer, Meulmeester, Beuker, Brugman, Roede, Verloove-
Vanhorick, and Wit 2000). Let us recalculate height SDS using the AGD package. Fortu-
nately, we find that the same values.

R> library(AGD)

R> z <- with(smocc_200, y2z(y = hgt,

+ x = age,

+ sex = ifelse(sex == "male", "M", "F"),

+ ref = nl4.hgt))

R> identical(z, smocc_200$hgt.z)

[1] TRUE

Figure 3 shows that, as expected, the empirical Z-score distribution is close to the standard
normal. The few very extremely low heights correspond to pre-term born infants. The next
section concentrate on modelling hgt.z.

Function z2y() applies the inverse transformation of Z-scores to the original scale. The
following snippet converts hgt.z into the cm scale.

R> y <- with(smocc_200, z2y(z = hgt.z,

+ x = age,

https://CRAN.R-project.org/package=AGD
https://CRAN.R-project.org/package=anthro
https://CRAN.R-project.org/package=childsds
https://github.com/ki-tools/growthstandards
https://CRAN.R-project.org/package=zscorer
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Figure 3: Distribution of height SDS for 200 Dutch children.

+ sex = ifelse(sex == "male", "M", "F"),

+ ref = nl4.hgt))

R> all.equal(y, smocc_200$hgt, tol = 0.0001)

[1] TRUE

We have used the Dutch 1997 height references here, but there are more choices. The AGD
package also supports the WHO Child Growth Standards.

In practice we found that the model fit is often better when applied to Z-scores. Age-
conditional references are common in child growth exists, but could be rare in other fields.
An alternative is to apply the broken stick model to the standardized residuals of a preliminary
non-linear regression of the outcome on time.

4.4. Model fitting

Figure 4 displays the growth curves of a subset of 52 children. The Z-score transformation
takes away the major time trend, so all trajectories are more or less flat. This display allows
us to see an extremely detailed assessment of individual growth. Note how the measurements
cluster around ten ages: birth, 1, 2, 3, 6, 9, 12, 15, 18 and 24 months. While the data
collectors rigorously followed the study design, variation in timing is inevitable because of
weekends, holidays, sickness, and other events.

Fit one line

As a start, let us fit a simple model with just one line anchored at the minimum and maximum
age.

R> fit <- brokenstick(hgt.z ~ age | id, smocc_200)

R> ids <- c(10001, 10005, 10022)

R> plot(fit, new_data = data, group = ids, what = "all",

+ xlab = "Age (years)", ylab = "Length (cm)")
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Figure 4: Length growth of 52 infants expressed in the Z-score scale.
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Figure 5: Simple linear model with one line anchored at the extremes.
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Figure 6: Broken stick model with two lines.

Figure 5 shows the observed (blue) and fitted (red) trajectories of three selected children.
Note that this model can only capture the overall age trend. As a result, the approximation
to the data is quite bad.

Fit two lines

We now extend to two connected lines. The first line should start at birth and end at the
age of one year. The second line spans the period between one to two years. The lines must
connect at the age of one year. We estimate and plot the model as follows:

R> fit2 <- brokenstick(hgt.z ~ age | id, smocc_200, knots = 0:2)

R> plot(fit2, data, group = ids,

+ xlab = "Age (years)", ylab = "Length (SDS)")

The fit2 object holds the parameter estimates of the model:

R> fit2

Class: brokenstick (NULL)

Knots: 0 1 2 2.7

Means: -0.05 0.03 0.07 0.15

Variance-covariance matrix:

age_0 age_1 age_2 age_2.6776

age_0 1.19

age_1 0.46 0.8

age_2 0.47 0.76 0.83

age_2.6776 -0.13 0.12 0.27 0.33

Residual variance: 0.18

The printed output lists the knots of the model at 0, 1, 2 and 2.6776 years. The left and
right boundaries are located at 0 and 2.6776, respectively. The means entry lists the fixed
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Figure 7: Broken stick model with nine lines.

effect estimates, which we interpret as the average SDS per time point. The time-to-time
variance-covariance matrix cover four random effects (3 visits + 1 end knot). The residual
variance measures the variability of the discrepancies between the model and the observed
data. These three parameters (fixed, random, residual variance) are well interpretable and
fully record the fitted broken stick model.

Fit nine lines

The two-line model does not fit well. We substantially refine the model by adding a knot for
each scheduled visit. To make model specification independent of the data, we specify the
right boundary as a constant of three years. We code and run the model as

R> knots <- round(c(0, 1, 2, 3, 6, 9, 12, 15, 18, 24)/12, 4)

R> fit9 <- brokenstick(hgt.z ~ age | id, data = smocc_200,

+ knots = knots, boundary = c(0, 3))

This optimization problem is more complicated and time-consuming. As noted before, it is
common for the optimization software to issue warnings, often related to the number of ran-
dom effects relative to the number of observations. While these may be a little discomforting,
we have found that the warnings are generally at the conservative side, and that the param-
eter estimates seem OK. With a small residual variance of 0.059, the nine-line broken stick
model fits the observed data very well.

The training set includes all subjects. Depending on the study goals, we may wish to further
improve the model fit by removing children from the data. For example, there might be
children for which few observations are available, children with diseases, or children with
trajectories that are very unusual or faulty. Be aware that such removals preserve the external
generalisability of the training sample.

4.5. Prediction
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Once we have a fitted model, we may obtain predictions. The subject(s) could be part of the
training sample, but could also consist of new children.

All subjects

The predict() function obtains predictions from the broken stick model. The function is
flexible, and allows for prediction of new subjects at arbitrary ages in a variety of output
formats. The simplest call

R> p1 <- predict(fit9, smocc_200)

R> head(p1, 3)

.pred

1 0.57

2 0.88

3 0.74

produces the predicted value (in .pred) for each row in data.

The predicted values represent a compromise between the person’s data values and the global
mean. In general, the fewer and less extreme data points of a person are, the closer the
compromise will be toward the global mean. The compromise is called the conditional mean
of the posterior distribution, the sum of the fixed and random effects.

We can obtain the locations at which the lines connect by specifying the x = "knots" argu-
ment, e.g.

R> p2 <- predict(fit9, smocc_200, x = "knots")

R> head(p2, 3)

# A tibble: 3 x 9

.source id age sex ga bw hgt hgt.z .pred

<chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 added 10001 0 <NA> NA NA NA NA 0.571

2 added 10001 0.0833 <NA> NA NA NA NA 0.886

3 added 10001 0.167 <NA> NA NA NA NA 0.726

This is case 1 in the help of predict.brokenstick(). The result p2 is a table with 2200 rows
(= 11 knots × 200 subjects). The rows include additional identifying information. Adding
the shape = "wide" argument transforms the information into repeated measures, with 200
rows and 12 = 1 + 11 columns, that form supplemental variables for further analyses at the
subject level.

We may also obtain both the conditional means as well as predictions at the observation ages
for all children by

R> p3 <- predict(fit9, smocc_200, x = "knots", strip_data = FALSE)

R> head(p3, 3)



Journal of Statistical Software 19

# A tibble: 3 x 9

.source id age sex ga bw hgt hgt.z .pred

<chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 data 10001 0 female 40 3960 52 0.575 0.571

2 data 10001 0.0821 female 40 3960 55.6 0.888 0.882

3 data 10001 0.159 female 40 3960 58.2 0.797 0.742

which contains 4140 rows (= 1940 data points + 2200 added points).

Now suppose that we desire to predict height SDS at other ages, e.g. at 0.42, 1.33 and 4 years.
We can do so by (case 4, all groups)

R> head(predict(fit9, smocc_200, x = c(0.42, 1.33, 4), shape = "wide"), 3)

# A tibble: 3 x 4

id ‘0.42‘ ‘1.33‘ ‘4‘

<dbl> <dbl> <dbl> <dbl>

1 10001 0.402 0.0287 NA

2 10002 -0.265 -0.488 NA

3 10003 2.06 1.04 NA

Thus, we have some flexibility to work with times that are not breakpoints. Remember though
that the underlying model did not change. For example, we cannot magically predict outside
the model at age 4.

Single subject

Obtaining predicted values per subject requires the group argument (case 3). For example

R> predict(fit9, smocc_200, group = 10001, shape = "vector")

[1] 0.57 0.88 0.74 0.62 0.29 -0.20 0.11 0.12 -0.14 0.16

returns the vector of predictions for child 10001. Remove the shape argument to append the
child’s data. Also, here we can predict at other times using the x argument (case 4).

Now suppose that for subject 10001 we have additional height data at ages 0.42 and 1.33
years. Can we predict the child’s trajectory with these new points included? The answer is
yes. The command (case 5)

R> tail(predict(fit9, smocc_200, x = c(0.42, 1.33), y = c(-0.5, -1),

+ group = c(10001, 10001), strip_data = FALSE), 3)

# A tibble: 3 x 9

.source id age sex ga bw hgt hgt.z .pred

<chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 data 10001 2.01 female 40 3960 88.3 0.227 0.0687

2 added 10001 0.42 <NA> NA NA NA -0.5 0.217

3 added 10001 1.33 <NA> NA NA NA -1 -0.254
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Figure 8: Alice and Fred - observed (blue) and fitted (red) trajectory.

appends two new records to the data of child 10001, and recalculates the trajectory using all
data.

New subject

Suppose we have measured two children, Fred and Alice. We wish to obtain predictions for
both using the model fit9. The following snippet calculates predictions at both the observed
ages and at the knot locations:

R> data <- data.frame(

+ age = c(0, 0.12, 0.32, 0.62, 1.1, 0.25, 0.46),

+ hgt.z = c(-1.2, -1.8, -1.7, -1.9, -2.1, -1.9, -1.5),

+ id = c(rep("Fred", 5), rep("Alice", 2)))

R> p <- predict(fit9, data, x = "knots", strip_data = FALSE)

We can plot the trajectories data by

R> plot(fit9, data, ylim = c(-2.5, 0), xlab = "Age (years)", ylab = "Length (SDS)")

Alice contributes only two data points in the first half-year. The model expects that her height
SDS will be around -1 SD at the age of two years. Using the data up to 1.1 years, the model
predicts that Fred’s growth curve remains around -2.0 SD until Fred is 1.5 years, and then
increases to around -1.8 SD. While both predicted trajectories are extreme extrapolations,
the example illustrates that it is possible to make informed predictions using just a handful
of data points.

The predict() function does not care about whether new_data is the training data or not.
All options are supported in both training and test data, thus providing ample flexibility to
suit many use cases.

4.6. Quality of prediction
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Figure 9: Predicted versus observed values.

Figure 9 is the scatterplot of the observed versus predicted values provides a visual represen-
tation of the accuracy of the prediction of the model in height SDS and cm scales. Both plots
suggest an excellent fit between the observed and fitted data. The percentage of explained
variance for the height SDS is high: 97.8%. The standard deviation of the residuals is equal to
0.152 SD, a small value in the Z-scale. When back-converted to centimetres, the scatterplot
of the observed versus predicted values is even a little tighter. The proportion of explained
variance is close to perfection: 99.9%. The standard deviation of the residuals is 4 mm,
about the size of the technical error of measurement (TEM) for duplicate measurements in
infants.(Ismail, Puglia, Ohuma, Ash, Bishop, Carew, Al Dhaheri, and Chumlea 2016, Table
2)

The model is as good as it can get. The uncertainties associated with the transformation from
varying observation times to repeated measures will be small. For all practical purposes, the
results from a linear mixed or multilevel model and a repeated measures model are likely to
be same.

4.7. Knot placement strategies

Fitting the broken stick model requires a specification of the knots. The choice of the knots in-
fluences the quality and usefulness of the solution, so exercise some care in setting appropriate
knot locations.

The brokenstick() function uses the same set of knots for all subjects. By default, the
procedure places the boundary knots at the range of the data and no inner knots, resulting
in a model that is linear in time without breakpoints. The k argument is a quick way to add
k internal knots at equidense quantiles of the time variable. For example, specifying k = 1

puts a knot at the 50th quantile (median), setting k = 3 puts knots at the 25th, 50th and
75th quantiles, and so on. While convenient and quick, this option can result in suboptimal
knot placement that is not adequate for the problem at hand. In general, it is best to specify
explicit values for the knots and boundary arguments.
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Here are some suggestions for knot placement:

1. If you want to predict at specific ages, then specify knots at those ages. For example, if
the scientific interest includes prediction at the age of 1 and 2 years, then include these
ages as knots;

2. Setting knots at scheduled visits is a sensible strategy for obtaining predictions at pre-
cisely the scheduled times. Set equidistant knots if the analysis requires a fixed time
interval;

3. Keep the number of knots low, for speed and simplicity. Having many (≥ 10) knots can
improve the fit to the data. Still, it will also increase calculation time and may result
in unstable solutions. For problems that require more than 10 knots, reduce calculation
time by the setting method = "kr" method, and use control_kr() to improve stability
by a correlation model;

4. Do not place knots in sparsely filled areas of the data, e.g. in-between two visits. Doing
so may result in erratic joins;

5. Define a starting time common to all subjects (e.g. birth) and set the first breakpoint
knots[1] equal to the left boundary knot boundary[1]. The brokenstick() is already
cautions to ensure this;

6. Order knots in size;
7. Use the get_knots() function to extract knots from a fitted model;
8. Set maximum value in knots to the highest time of scientific interest, but still within

the data range. Set boundary knot boundary[2] larger than this value, e.g. equal to
the maximum of the time variable. Broken stick estimates at the right boundary knot
have no useful interpretation, so exclude those estimates from plots and ignore them in
subsequent analyses;

9. Rule of thumb: Limit the number of knots to the (average) number of data points per
subject;

10. Set knots to explicit values to support generalisation over the time variable in the
training data.

5. Applications

5.1. Critical periods

The following question motivated the development of the broken stick model: At what ages
do children become overweight? Knowing the answer to this question provides handles for
preventive interventions to counter obesity. Dietz (1994) suggested the existence of three
critical periods for obesity at adult age: the prenatal period, the period of adiposity rebound
(roughly around the age of 5-6 years), and adolescence. Obesity formed in these periods is
likely to increase the obesity risk at adult age and its complications.

A growth period, bounded by ages T1 and T2, is critical for adult overweight if the following
criteria hold: (de Kroon et al. 2010)

a. there is a significant difference in mean gain score Z2 − Z1 between subjects with and
without adult overweight;
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Figure 10: Body Mass Index (BMI) SDS by log(age + 0.2) (Terneuzen cohort)

b. the gain score Z2 − Z1 has an independent contribution over Z2 to the prediction of
Zadult. It not only matters where you were at T2 but also how you got there;

c. Z2 correlates highly with Zadult, so it is easier (i.e. with higher sensitivity and specificity)
to identify children at risk for adult overweight.

de Kroon et al. (2010) found that the age interval 2-6 years met all criteria for a critical
period. Our re-analysis tests the requirements for the following age intervals: birth-4 months,
4 months-1 year, 1-2 years, 2-4 years, 4-6 years, 6-10 years and 10-14 years. Hence, we define
the following break ages:

R> knots <- round(c(0, 1/3, 1, 2, 4, 6, 10, 14, 24, 29), 3)

R> labels <- c("birth", "4m", "1y", "2y", "4y", "6y", "10y", "14y", "24y", "")

The Terneuzen Birth Cohort (de Kroon, Renders, Kuipers, van Wouwe, van Buuren, de Jonge,
and Hirasing 2008) comprises of 2604 children born around the year 1980 in Terneuzen, The
Netherlands. Figure 10 shows the BMI standard deviation scores (SDS) against age in a
random subset of 306 children. While we may easily recognise scheduled visits at birth, 1y
and 14y, observations at other periods are less structured. Compared to the analysis in de
Kroon et al. (2010), we removed the knots at 8 days and 18 years (because these appear in
sparse data areas) and added knots at 4, 14 and 24 years. We set the right boundary knot to
29y, slightly higher than the maximum age in the data.

R> ctl <- control_brokenstick(

+ lmer = lmerControl(check.conv.grad = .makeCC("warning", 0.02, NULL),

+ check.conv.singular = .makeCC("ignore", 0.001)))
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Figure 11: Body Mass Index (BMI) SDS trajectories of six subjects, observed (blue) and
fitted (red). lmer method.

R> fit_lmer <- brokenstick(bmi.z ~ age | id, data = mice::tbc,

+ knots = knots, boundary = c(0, 29),

+ control = ctl)

Depending on the precise specification of the knots, the default brokenstick() procedure that
calls lme4::lmer() may print the warning Model failed to converge with max|grad|

= 0.011882 (tol = 0.002, component 1) or a message boundary (singular) fit: see

?isSingular. These issues arise because of the over-parametrised nature of the default bro-
ken stick model, potentially resulting in a singular variance-covariance matrix fit@omega,
combined with a sparsity of data. The control_brokenstick() command can prevent the
warning and message.

R> ids <- c(8, 1259, 2447, 7019, 7460, 7646)

R> plot(fit_lmer, mice::tbc, group = ids,

+ ylab = "BMI SDS", xlab = "Age (years)")

Figure 11 shows observed and fitted BMI SDS trajectories for six subjects using the lmer

method. In general, the model fits the data well. The per cent explained variance of BMI
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Figure 12: Body Mass Index (BMI) SDS trajectories of six subjects, observed (blue) and
fitted (red). kr method.

SDS obtained by get_r2(fit_lmer, mice::tbc) equals 84 per cent. Note that he fitted
trajectory for subject 8 reveals a pretty rough estimate at the age of 24y. Persons 1259 and
7460 have very low (-2.5 SD) and high (+2.5 SD) BMI SDS at adult age, respectively. Note
that the model pulls the adult BMI SDS estimates (in red) towards the global mean, due
to the well-known bias-variance tradeoff.(Gelman and Hill 2007, pp. 394) Pulling is more
vigorous at the extremes. The effect is negligible for more average trajectories, such as for
subject 2447.

The royal way to treat such warnings and message is to simplify the model, e.g., by removing
knots. An alternative is to constrain the broken stick model, in particular the covariance
matrix. Selecting the kr method applies the Argyle correlation model, at the expense of fit
to the data. On the other hand, the fitted trajectories will be much stabler in regions with
sparse data. The following snippet applies the kr method.

R> fit_kr <- brokenstick(bmi.z ~ age | id, data = mice::tbc,

+ knots = knots, boundary = c(0, 29),

+ method = "kr", seed = 41441)

Figure 12 is the equivalent to Figure 11, but now for method kr. The per cent explained
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variance is the same. Due to the constraint placed on the covariance matrix, the trajectories
are slightly smoother and more stable in the adult ages with limited data. The rough estimate
for subject 8 has gone. There is still some gravity towards to global mean at knot 24y for
persons 1259 and 7460, but it is of lesser magnitude. All fitted trajectories are well behaved.
We, therefore, select the kr solution for further analysis.

To identify critical periods, we need to predict adult overweight. In Figure 12, only three
out of six subjects had a BMI measurement at adult age. Since we do not want the results
to overly depend on fitted extrapolations, we restrict the analysis sample to persons with an
adult measurement. The following lines extract the repeated measures for 92 (out of 306)
individuals for whom we observed adult BMI.

R> tbc1 <- mice::tbc %>%

+ filter(!is.na(ao) & first) %>%

+ select(id, nocc, sex)

R> tbc2 <- mice::tbc.target %>%

+ filter(id %in% tbc1$id)

R> prd <- predict(fit_kr, mice::tbc, x = "knots",

+ shape = "wide", group = tbc1$id)

R> data <- bind_cols(prd,

+ select(tbc1, -id),

+ select(tbc2, -id))

R> head(data, 3)

# A tibble: 3 x 15

id ‘0‘ ‘0.333‘ ‘1‘ ‘2‘ ‘4‘ ‘6‘ ‘10‘ ‘14‘ ‘24‘ ‘29‘

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 8 0.371 -0.440 0.366 1.45 1.10 0.606 0.490 0.543 -0.822 -1.18

2 60 0.159 -0.372 -0.0441 -0.361 -0.595 -0.819 -1.03 -1.16 -1.46 -1.40

3 97 1.68 0.569 0.948 1.90 1.28 0.838 0.444 0.238 0.398 0.709

# ... with 4 more variables: nocc <dbl>, sex <dbl>, ao <dbl>, bmi.z.jv <dbl>

Figure 13 shows the 92 fitted trajectories coloured by adult overweight status (BMI SDS >
1.3). It is evident that BMI SDS at ages of 14y or 10y is highly predictive of adult overweight,
but does that also hold in early childhood? Also, does a change in specific periods predict
later overweight? To answer such questions, we fit simple linear models to predict observed
(not fitted!) BMI SDS at adult age from the fitted BMI SDS trajectories. The following code
block fits two models for the period 4y-6y.

R> m1 <- lm(bmi.z.jv ~ ‘6‘, data)

R> m2 <- lm(bmi.z.jv ~ ‘6‘ + I(‘6‘-‘4‘), data)

R> anova(m1, m2)

Analysis of Variance Table

Model 1: bmi.z.jv ~ ‘6‘

Model 2: bmi.z.jv ~ ‘6‘ + I(‘6‘ - ‘4‘)
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Figure 13: Body Mass Index (BMI) SDS trajectories for 92 subjects, coloured by adult
overweight status.

Res.Df RSS Df Sum of Sq F Pr(>F)

1 90 74.3

2 89 63.5 1 10.8 15.2 0.00019 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Model m1 predicts adult BMI SDS from BMI SDS 6y, and explains 45.3 per cent of the
variance. Model m2 extends the model with the pre-gain between 4y and 6y. If the pre-gain
improves the prediction, then it matters how much you gained between 4y and 6y. In that
case, we would call the interval 4y-6y a critical period. Here we found that model 2 explain
53.6 per cent variance, thus 8.3 per cent more. The anova statement performs the formal
test. In this case, the pre-gain is significant over the last predictor at 6y. Thus, interval 4y-6y
classifies as a critical period. We can repeat these analyses for other age intervals, similar to
Table 3 in Kenward (1987).

5.2. Time-to-time correlations

The conditional gain score is defined as (Cole 1995)

conditional Zgain =
Z2 − rZ1√

1− r2
,

where Z1 and Z2 are the standard deviation scores at times T1 and T2, with T2 > T1, and
where r is the correlation between Z1 and Z2. The conditional gain corrects for regression to
the mean, which is its selling point over traditional velocity measures and is less sensitive to
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measurement error.(van Buuren 2007) A practical difficulty is to obtain r for a given T1 and
T2. The time-to-time correlation matrix needs to be known. Also, we need to interpolate r if
T1 or T2 differs from the tabulated ages.

The broken stick model provides an estimate of the time-to-time correlation matrix. The
brokenstick object stores the variance-covariance matrix Ω of the random effects in the list
component fit$omega. For a perfectly fitting model (with σ2 = 0) Ω equals the time-to-time
covariance matrix, so cov2cor(fit$omega) gives the desired time-to-time correlation matrix.
If σ2 > 0 then Ω overestimates the covariances between the observed data. In general, we need
to add the within-residual variance estimate to the diagonal, thus Ω+ σ̂2I(ni) to estimate the
time-to-time covariance matrix.

R> fit <- brokenstick(hgt.z ~ age | id, data = smocc_200,

+ knots = 1:4/2, boundary = c(0, 3))

boundary (singular) fit: see ?isSingular

R> t2t <- fit$omega + diag(fit$sigma2, ncol(fit$omega))

R> round(cov2cor(t2t), 2)

age_0 age_0.5 age_1 age_1.5 age_2 age_3

age_0 1.00 0.52 0.41 0.42 0.35 0.01

age_0.5 0.52 1.00 0.77 0.73 0.68 -0.30

age_1 0.41 0.77 1.00 0.81 0.79 -0.16

age_1.5 0.42 0.73 0.81 1.00 0.84 0.00

age_2 0.35 0.68 0.79 0.84 1.00 0.07

age_3 0.01 -0.30 -0.16 0.00 0.07 1.00

In child growth, we expect that the correlation tapers off as the difference between T1 and
T2 grows. Also, for a fixed interval T2 − T1 we expect the correlation to increase with age.
Ignoring the uninteresting estimate for age_3, we find that both expectations hold. Altering
the number and location of the knots may change this. It is often useful to scan the time-to-
time correlation matrix for gross deviations of the expectations. If such happens, one could
simplify the model, for example, by subjecting Ω to a correlation model.

R> fit <- brokenstick(hgt.z ~ age | id, data = smocc_200,

+ knots = seq(0, 2, 0.1), boundary = c(0, 3),

+ method = "kr")

R> t2t <- fit$omega + diag(fit$sigma2, ncol(fit$omega))

R> dim(t2t)

[1] 22 22

The above code fits a model with 22 equidistant breakpoints, which is likely large enough for
most purposes. It works because it restricts the covariance-matrix by the Argyle correlation
model, which summarises the information by just two parameters. We may extract or re-
estimate these parameters and create a one-liner for calculating r.
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Figure 14: Daily body weight (KG) for 12 subjects under three conditions.

We cannot indefinitely add breakpoints. Suppose we double the number of knots by setting
knots = seq(0, 2, 0.05). Then even kr is not able to cope and will abort with Error:

Sigma is symmetric but not positive. Thus, as always, be sensible in what you ask the
software to do for you.

5.3. Profile analysis

Profile analysis (Morrison 1976; Johnson and Wichern 1988) refers linear multivariate lin-
ear methods to test for differences in population means or treatment effects, typically by
regression analysis or multivariate analysis of variance (MANOVA). These methods assume
independence of subjects, organise the data at the subject level, and express parameters
of interest by linear combinations of outcomes, like change scores, means or other derived
quantities.

Krone, Boessen, Bijlsma, van Stokkum, Clabbers, and Pasman (2020) report a statistical
analyses using the linear mixed model with time-varying individual subject data. This section
re-analyses the data from Figure 4 using the broken stick model. The data are available as
the brokenstick::weightloss object.

Figure 14 charts daily body weight measurements of twelve individuals who were followed
for nine weeks. The investigators subdivided the total duration into three periods of three
weeks. Period one (week 1-3) acted as a control period. During period 2 (week 4-6), the
investigators stimulated participants to restrict food intake, and during period 3 (week 7-9)
the experimenters promoted physical activity. Subjects 4 and 12 received the interventions
in the opposite order. See Krone et al. (2020) for more detail.
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Figure 15: Constant model. Observed and fitted trajectories for a model that summarises
each experimental period by a constant.

Most of these subjects adhere quite well to the data collection design. Some trajectories show
gaps due to missed measurements. The most extreme example is the trajectory at the top,
which has only scant measures. Other curves display stretches of lines, suggesting that missed
measurements were linearly interpolated. One of the series shows some surprising spikes,
likely to be measurement errors. All in all, these data perfectly illustrate the inescapable
imperfections of real data.

The remainder of the section discusses two ways to estimate the effect of diet and physical
activity on body weight.

Constant model

R> fit0 <- brokenstick(body_weight ~ day | subject, data,

+ knots = c(0, 21, 42, 63), degree = 0)

R> plot(fit0, data, size_y = 0, color_y = rep("grey", 2), what = "all",

+ scales = "free_y", xlab = "Day", ylab = "Body weight (KG)",

+ n_plot = 12, ncol = 4)

The model underlying Figure 15 summarises the trajectory within a period by a constant,
the mean. We obtain an estimate of these mean by setting the degree = 0 argument. This
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model gives a fair representation of the trajectory of subjects 9 (a persistent downward trend),
1 and 5 (no trend). On the other hand, the model fails to capture patterns for subjects 2, 4
and 8 (rebound in period 3) or 11 (inverse rebound).

It is straightforward quantify the effects of Diet and Activity relative to Control. The next
code snippet calculates these effects per person, accounting for the intervention order reversal
for subjects 4 and 12.

R> prd <- data.frame(predict(fit0, data, x = "knots", shape = "wide"))

R> control <- prd[, 2]

R> diet <- prd[, 3]

R> diet[c(4, 12)] <- prd[c(4, 12), 4]

R> activity <- prd[, 4]

R> activity[c(4, 12)] <- prd[c(4, 12), 3]

R> round(data.frame(diet_control = diet - control,

+ activity_control = activity - control,

+ activity_diet = activity - diet), 1)

diet_control activity_control activity_diet

1 0.2 0.2 0.0

2 -1.1 -1.8 -0.7

3 1.0 1.0 0.1

4 -1.8 -0.7 1.1

5 0.4 0.1 -0.2

6 -1.6 -3.3 -1.7

7 -0.2 -0.5 -0.4

8 -0.6 -1.1 -0.4

9 -1.2 -2.0 -0.9

10 -0.6 -1.2 -0.6

11 0.1 -0.6 -0.6

12 -1.3 -0.4 0.9

The average weight under caloric restriction is 0.6 KG lower than control. In contrast, we
find a 0.8 KG lower body weight when we stimulate physical activity. We could be tempted
to believe that exercise reduces weight more than a diet. However, except for subjects 4
and 12, the investigators administered the activity treatment after the diet treatment, so
the difference relative to control represents the combined effect of diet and activity on body
weight. It might be more relevant to study the difference between training and diet (third
column). The average difference of -0.3 KG suggests that diet is more effective than physical
activity. Realise that also this estimate is not entirely satisfactory. First, subjects 4 and 12
had a reversed administration, so the difference does not make sense for them. Second, as
anyone who has tried to lose weight can attest, “quick wins” are more likely in period 2 than
in period 3. Although it is possible to account for these sequence effects, there is a more
intuitive analysis of the data.

Broken stick model
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Figure 16: Broken stick model. Observed and fitted trajectories for a model that summarises
each experimental period by a line.

R> fit1 <- brokenstick(body_weight ~ day | subject, data,

+ knots = c(0, 21, 42, 63))

R> plot(fit1, data, size_y = 0, color_y = rep("grey", 2), what = "all",

+ size_yhat = 1.5, scales = "free_y", , xlab = "Day", ylab = "Body weight (KG)",

+ n_plot = 12, ncol = 4)

Figure 16 shows the same data as in Figure 15 but now fitted by the broken stick model.
This model also suggests a persistent downward trend for subject 9 and an absence of for
participants 1 and 5. Also, the model now correctly identifies the prominent zig-zag patterns
for persons 2, 4, 8 and 11 across the three experimental periods.

A natural way to quantify the effect of the intervention is to calculate the before-after estimate
per period. For example, for person 2 the effect of diet is 60.9− 63.6 = −2.7 KG, of activity
is 62.6 − 60.9 = +1.7 KG. The following code accounts for the alternate treatment ordering
of subjects 4 and 12.

R> prd <- data.frame(predict(fit1, data, x = "knots", shape = "wide"))

R> control <- prd[, 3] - prd[, 2]

R> diet <- prd[, 4] - prd[, 3]

R> diet[c(4, 12)] <- prd[c(4, 12), 5] - prd[c(4, 12), 4]
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R> activity <- prd[, 5] - prd[, 4]

R> activity[c(4, 12)] <- prd[c(4, 12), 4] - prd[c(4, 12), 3]

R> round(data.frame(control = control,

+ diet = diet,

+ activity = activity), 1)

control diet activity

1 -0.3 0.5 -0.4

2 0.1 -2.7 1.7

3 0.8 0.5 0.6

4 0.1 0.7 -2.2

5 0.6 -0.6 0.7

6 -0.8 -2.6 -0.8

7 0.3 -0.8 0.3

8 -0.3 -1.1 0.3

9 -1.0 -1.4 -0.4

10 -0.2 -1.1 -0.3

11 -0.9 0.9 -2.6

12 -0.9 -0.4 -0.5

The average effects are -0.2 KG (control), -0.7 KG (diet) and -0.3 KG (activity). Although
not statistically significant, the slight decrease of -0.2 KG during the control period suggests
that weight monitoring by itself may motivate the participant to lose weight. The effect
estimates for diet and activity are of similar magnitude as before. Still, they can be sizeable
discrepancies at the individual level, e.g. for subjects 2 or 11.

We may obtain a simple estimate of the sequence effect by linear regression as

R> df <- data.frame(y = c(diet, activity),

+ act = rep(c(0, 1), each = 12),

+ per2 = rep(c(rep(1, 3), 0, rep(1, 7), 0), 2))

R> coef(lm(y ~ act, data = df))

(Intercept) act

-0.68 0.38

R> coef(lm(y ~ act + per2, data = df))

(Intercept) act per2

-0.79 0.38 0.12

The result is a little surprising. When applied in period 2, the intervention leads to higher
body weight (+123 grammes) as compared to administration in period 3. Of course, bear in
mind that we calculated these results on very few individuals. Hence, they are sensitive to
substantial estimation error.

This application demonstrates that the broken stick model can effectively capture rapid linear
changes in experiments. Even though the actual timing of the observations may be erratic,
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it is easy to define, interpret and calculate intuitive effect estimates at the individual level.
Note that the analysis here assumed an instantaneous effect of the interventions. If we expect
a delay, then we may right-shift the knots by a few days and re-estimate the broken stick
model. By varying the number of days, we may be able to detect the optimal delay factor.

5.4. Curve interpolation

Problem

A growth chart visualises the individual trajectory relative to a set of centile lines. We may
store a centile line as a set of coordinates with a relatively dense age grid. If we connect the
adjacent vertices by a straight line, the centile will appear as smooth in time. However, this
plotting method runs into trouble when ages are wide apart. This section shows how we can
create a realistic interpolation with sparse time data.

Interpolation in measurement scale

Suppose we measured the length of a boy at the ages of 1 month (52.6 cm) and 14 months (81.7
cm). The following code block uses the AGD::y2z() function to convert the measurements to
standard deviation scores (SDS) relative to the reference of the Fourth Dutch Growth Study.

R> boy <- data.frame(x = c(1/12, 14/12), y = c(52.6, 81.7))

R> ref <- AGD::nl4.hgt

R> boy$z <- AGD::y2z(y = boy$y, x = boy$x, sex = "M", ref = ref)

R> boy$z

[1] -0.98 0.99

During the period the boy grows from moderately short (about -1.0 SD at month 1) to
relatively tall (about +1.0 SD at month 14). Figure 17 shows the usual representation of the
growth chart with a straight line drawn between the two values. Due to the convex shape of
the centile lines, the straight line that connects the two measurements starts at -1.0 SD, then
touches the -2.0 SD centile around 0.3 yr, is back at -1.0 SD around 0.7 yr, crosses the 0.0
SD line at 1 yr, and ends at +1.0 SD at 1.2 yr. The graph on the right-hand side portrays
the interpolated growth curve in the Z-score scale. Since length growth during infancy is not
linear in time, finding a real growth curve like this is extremely unlikely. Since we have just
two data points smoothing the data does not help either.

Interpolation in the Z-score scale

A first alternative is to apply the linear interpolation in the Z-score scale. This option is
attractive because convexity of centile lines is absent on this scale.

Figure 18 illustrates the interpolation in the Z-scale. By definition, the line that connects
the measurements is straight in the Z-score scale. In the cm scale, the representation is more
realistic and more pleasing to the eye. The curve crosses the 0 SD line about halfway, at
about 0.6 yr.

While this approach is a considerable improvement over interpolation in the Y -scale, it is
still not ideal. The assumption underlying this interpolation is that the Z-score increment is
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Figure 17: Linear interpolation in the cm scale results in an unrealistic trajectory at interme-
diate ages.
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Figure 18: Linear interpolation in the Z-score scale results in a more realistic trajectory at
intermediate ages.
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Figure 19: Broken stick model fitted in the SDS scale results in a most realistic expected
trajectory at intermediate ages.

constant across time. This assumption is false, however. Since length growth is more variable
during the first half-year than in the second half-year, we expect that the larger share of the
increment to occur during the earlier months. In other words, the cross-over point at 0.6 yr
is too late.

Interpolation by the broken stick model

The second alternative is a model-based interpolation. Assuming the availability of a fitted
broken stick model, we specify a dense time grid, say every week, and predict the length at
these times given the data from the observed trajectory. The expected curve represents the
most likely values under the model at the intermediate ages. The following code calculates
the relevant estimates from the fit_200 fitted model:

R> # prepare data input

R> age <- round(seq(2/24, 28/24, 1/24), 3)

R> z <- rep(NA, length(age))

R> z[1] <- boy$z[1]; z[length(z)] <- boy$z[2]

R>

R> # predict with broken stick model

R> zout <- predict(fit_200, x = age, y = z, shape = "vector")

R>

R> # convert predicted values to Y-scale

R> yout <- z2y(x = age, z = zout, ref = ref)

Figure 19 shows the results of the broken stick model. The predicted curve in the Y -scale
represents the most likely course according to the broken stick model. Because growth is more
variable during early infancy, the child realises the larger share of the change during the first
part of the period. As a result, the cross-over point where the predicted value intersects the



Journal of Statistical Software 37

0 SD line is now at 0.4 yr, considerably earlier than obtained by the two other interpolation
methods. The plot on the right-hand side confirms the steeper slope in the first part. Note
that this method treats rising and declining curves alike. For example, if the boy’s length
would be 57 cm at month 1 (+1.0 SD) and 76 cm at month 14 (-1.0 SD), the cross-over point
would also be at 0.4 yr.

Observe that we left the world of pure interpolation and moved to an approximation of the
data by a model. The observed and predicted lengths are not exactly equal. The difference
is so small that we may hardly notice the discrepancy when plotted in the Y -scale, but it is
more conspicuous in the Z-score scale. Of the three approaches considered here, the broken
stick model provides the most realistic expected trajectory at the intermediate ages.

5.5. Multiple imputation

Remember from section 2 that the broken stick estimates are conditional means. We may be
tempted to analyse these estimates as if they were “just data”, but they do not have the same
variability as the real data. For example, suppose we calculate the correlation matrix of the
broken stick estimates. We know that the values in this matrix will exceed those from the
underlying observed data. Not accounting for this fact leads to overconfident predictions and
results that are too good to be true.

Multiple imputation (Rubin 1987; van Buuren 2018) restores variability by adding noise. We
may fit standard complete-data software to the imputed data, and obtain valid regression
weights, confidence intervals and P -values under a wide range of conditions.

By default, method kr executes 200 iterations of the Kasim-Raudenbush sampler. The
imp_skip argument to the control_kr() function specifies the interval at which the method
adds noise to the broken stick estimates. The following code block appends the break ages to
the input data and sets imp_skip = 10. The call to the brokenstick() function thus creates
20 imputations for each missing outcome (hgt.z here).

R> ctl <- control_brokenstick(kr = control_kr(imp_skip = 10))

R> knots <- round(c(0, 1, 2, 3, 6, 9, 12, 15, 18, 24)/12, 4)

R> data <- bind_rows(smocc_200[!is.na(smocc_200$hgt.z), ],

+ expand.grid(id = unique(smocc_200$id), age = knots))

R> fit_kr <- brokenstick(hgt.z ~ age | id, data = data,

+ knots = knots, boundary = c(0, 3),

+ method = "kr", control = ctl, seed = 15244)

R> plot(fit_kr, new_data = data, show = c(TRUE, FALSE, TRUE),

+ group = c(10001, 10005, 10022),

+ xlab = "Age (years)", ylab = "Length (SDS)")

Figure 20 displays the observed data from three persons plotted on top of 20 imputed trajec-
tories. The within-person within-time average over the grey trajectories approximates to the
broken stick estimate (not shown here). The observed curve in each panel occasionally strays
towards the boundaries of the grey bundle. This behaviour is as expected and indicates that
the blue curve performs like a grey curve.

Section 5.2 showed how we can estimate the time-to-time correlation matrix. An alternative
way is to calculate it from the imputed data, as follows:
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Figure 20: Observed data plotted on top of 20 imputed trajectories.

R> expand.grid(id = unique(smocc_200$id), age = knots) %>%

+ bind_cols(as.data.frame(fit_kr$draws)) %>%

+ pivot_longer(cols = starts_with("V"), names_to = "imp") %>%

+ pivot_wider(id_cols = c("id", "imp"), names_from = "age") %>%

+ select(-id, -imp) %>%

+ cor() %>%

+ round(2)

0 0.0833 0.1667 0.25 0.5 0.75 1 1.25 1.5 2

0 1.00 0.68 0.62 0.56 0.46 0.39 0.37 0.35 0.33 0.29

0.0833 0.68 1.00 0.81 0.76 0.66 0.56 0.53 0.53 0.50 0.45

0.1667 0.62 0.81 1.00 0.84 0.72 0.63 0.58 0.57 0.56 0.51

0.25 0.56 0.76 0.84 1.00 0.77 0.68 0.63 0.61 0.59 0.54

0.5 0.46 0.66 0.72 0.77 1.00 0.84 0.80 0.76 0.73 0.67

0.75 0.39 0.56 0.63 0.68 0.84 1.00 0.86 0.81 0.78 0.72

1 0.37 0.53 0.58 0.63 0.80 0.86 1.00 0.86 0.83 0.77

1.25 0.35 0.53 0.57 0.61 0.76 0.81 0.86 1.00 0.88 0.81

1.5 0.33 0.50 0.56 0.59 0.73 0.78 0.83 0.88 1.00 0.84

2 0.29 0.45 0.51 0.54 0.67 0.72 0.77 0.81 0.84 1.00

Another important application of the multiply-imputed curves is to obtain correct confidence
intervals and P -values for estimates of scientific interest. The most convenient way to do this
is to convert the brokenstick object into an object of class mids, as defined by the mice
package. The brokenstick package currently has no features that perform the conversion.

5.6. Curve matching

Curve matching (van Buuren 2014) is a tool to assist in the interpretation and prediction
of individual growth curves. The idea is as follows. Suppose we measure the growth of the
target child up to half a year and plot the measurements onto his or her growth chart. Curve
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Figure 21: Curve matching. Predict infant length at 14 months given length data up to 6
months using 10 matches.

matching is a nearest-neighbour technique that relies on historical growth data. It finds, say,
ten other children who are similar to the target child, and add the curves of those matches
to the child’s chart. If the matching is done right, then the bundle of historic growth curves
suggests how the target child will develop in the future.

Figure 21 demonstrates curve matching for infant length. The red curve corresponds to five
measurements of the target child made during the first six months. The ten grey curves are
historic growth curves from the ten matched children. We may define similarity in many ways.
Here we use a linear model to predict length at the age of 14m from previous length data. The
distance between the target child and another child is equal to the difference between their
predicted values. The procedure lifts the data of the matches from the database, and plots
the observed growth curves onto the chart as grey curves. This method for finding nearest
neighbours is known as predictive mean matching and has grown into a powerful technique
for missing data.(van Buuren 2018) The bundle of grey curves indicates some possible future
trajectories of the target child. The mean of the bundle is the most likely path. Graphically
it is the dotted blue curve between the last measurement and the age of the outcome.

Let’s look at a numerical example. We split the data into one target child and 199 donor



40 Broken Stick Model for Irregular Longitudinal Data

children, and fit a broken stick model to the donor set.

R> donor_data <- smocc_200 %>%

+ filter(id != "10001")

R> target_data <- smocc_200 %>%

+ filter(id == "10001" & age < 0.51)

R>

R> # fit brokenstick model at time level

R> knots <- round(c(0, 1, 2, 3, 6, 9, 12, 15, 18, 24)/12, 4)

R> fit <- brokenstick(hgt.z ~ age | id, data = donor_data,

+ knots = knots, boundary = c(0, 3),

+ method = "kr", seed = 15244)

All timepoints from the donor data enter the broken stick model. Note that the target_data

contains only observations from the first five visits.

We now fit the prediction model on the child-level donor data. The prediction model contains
the broken stick estimates for length SDS up to 6 months, as well as sex, gestational age and
birth weight as covariates.

R> # predict with matching model at child level

R> covariates <- donor_data %>%

+ group_by(id) %>%

+ slice(1)

R> bse <- predict(fit, donor_data, x = "knots", shape = "wide")

R> donors <- bind_cols(covariates, select(bse, -id))

R> model <- lm(‘1.25‘ ~ ‘0‘ + ‘0.0833‘ + ‘0.1667‘ + ‘0.25‘ + ‘0.5‘

+ + sex + ga + bw, data = donors)

R> summary(model)

Call:

lm(formula = ‘1.25‘ ~ ‘0‘ + ‘0.0833‘ + ‘0.1667‘ + ‘0.25‘ + ‘0.5‘ +

sex + ga + bw, data = donors)

Residuals:

Min 1Q Median 3Q Max

-1.3111 -0.2836 0.0034 0.2848 1.4961

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.62e-02 7.31e-01 0.02 0.98

‘0‘ 4.18e-02 5.06e-02 0.82 0.41

‘0.0833‘ 1.70e-02 1.00e-01 0.17 0.87

‘0.1667‘ -6.85e-02 1.45e-01 -0.47 0.64

‘0.25‘ -2.58e-01 1.41e-01 -1.82 0.07 .

‘0.5‘ 1.17e+00 7.98e-02 14.62 <2e-16 ***



Journal of Statistical Software 41

sexmale 9.16e-02 6.38e-02 1.44 0.15

ga 6.74e-03 2.22e-02 0.30 0.76

bw -1.05e-04 9.61e-05 -1.09 0.28

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.43 on 190 degrees of freedom

Multiple R-squared: 0.774, Adjusted R-squared: 0.764

F-statistic: 81.3 on 8 and 190 DF, p-value: <2e-16

The next step is to extract model predictions for both donors and target and find the ten
closest donors.

R> donors_pred <- predict(model)

R> names(donors_pred) <- donors$id

R>

R> target <- bind_cols(

+ slice(target_data, 1),

+ select(predict(fit, target_data, x = "knots", shape = "wide"), -id))

R> target_pred <- predict(model, newdata = target)

R>

R> matches <- sort(abs(donors_pred - target_pred))[1:10]

R> matches

11013 10093 11023 11051 10006 10068 11063 10032 11046 11080

0.0026 0.0376 0.0376 0.0693 0.0771 0.0792 0.0841 0.0852 0.0893 0.0953

Finally, let us study the observed and fitted trajectories of the ten matches.

R> ids <- as.numeric(names(matches))

R> plot(fit, new_data = donor_data, group = ids,

+ xlim = c(0, 1.4), size_y = 1, size_yhat = 0,

+ xlab = "Age (years)", ylab = "Length (SDS)",

+ ncol = 5)

The ten trajectories are all are close to the prediction (0.101 SD) for the target child at the
age of 1.25y. Note that this does not guarantee that the histories are identical. Most matches
have relatively flat curves, but a few (10051, 11023, 11086) show striking rising patterns.
Nevertheless, these candidates are the best in terms of the model prediction.

If we wish the curves of the matches during the first six months to be closer to the target case,
we could consider alternative metrics. A simple measure is the sum of squares differences of
the broken stick estimates. Such a selection may be visually more pleasing, at the expense
of prediction accuracy. On the other hand, we are less tied to setting one particular future
time point, so other measures may work better when “future” is more vaguely defined as
a time interval. It is still an open research question where we strike a balance. Whatever
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Figure 22: Curve matching. Observed and fitted trajectories of 10 matches for subject 10001.

the objectives of preferences from the user might be, the curve matching methodology, as
illustrated here, has tremendous flexibility and is easy to adapt.

6. Conclusion

Overview

This paper introduces a new approach to solve the problem of irregular longitudinal data.
The method absorbs the time-dependent information into a set of broken stick estimates
at the subject level. The primary advantage is that it simplifies the analysis by splitting
the modelling problem into two steps. First, solve the timing problem, and then solve the
substantive/scientific problem. The method is mathematically simple, using a linear B-spline,
conceptually simple, yet principled.

Distinctive features

The assumptions of the model cover many cases of practical interest: a straight line between
breakpoints, a multivariate normal distribution for the random effects, and the MAR as-
sumption including future data. Despite the relatively low number of model parameters, it
is possible to obtain a close fit to the data, sometimes almost up to perfect reconstruction
(c.f. Figure 9). There is no need to specify equidistant breakpoints. Applications in human
growth and development are often more natural using non-uniformly spaced knots, which is
very easy to model. Many people find it easier to understand the raw data values than the
summaries. The broken stick model invites visualisation of the actual data points against time
and makes it is easy to portray uncertainty as a bundle of curves. Such direct visualisation
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options contribute to the explainable and responsible personalised analyses that appeal to a
broad user group.

Current limitations

The broken stick model, as presented here, uses just three variables: time, measurement and
group. This design choice simplifies interpretation and estimation. The lack of covariates
in the model implies that the transformation from irregular data to repeated measures is
identical for every subject. As long as the residual error is small, the relations with not-in-
the-model variables thus remain intact. The possibility to include covariate in a second-round
enhances modular modern analytic pipelines. Yet, some will prefer the direct estimation of
all effects in one more extensive analysis. The current package does not support covariates.
However, an experienced R user will have no difficulty in extending the formula in section 3.5
to include the covariates of interest.

The method that requires that all subject share the same time axis and breakpoints. In our
applications, synchronisation at the start was most natural (e.g. birth, start of experiment),
which is easy to do. In some cases, one might wish to anchor in the middle, e.g. at menarche,
which occurs at different ages for different individuals.(Naumova, Must, and Laird 2001)
It could also make sense to fasten the end, e.g. at death. However, it will be hard to do
meaningful predictive analysis as we cannot anchor alive subjects. The choice of the anchor
may matter less for cyclic processes. The broken stick model is not suited for applications
where breakpoints vary between individuals. In those cases, it is better to use the linear
mixed model directly.

Software

The Kasim-Raudenbush sampler (Kasim and Raudenbush 1998) is both fast and flexible. It
produces estimates of the residual error variance per subject, can accommodate for correlation
models and supports multiple imputation out-of-the-box. More research needed to establish
its statistical properties especially compared to lmer() and other established methods. It
would also be interesting to study the suitability of the correlation models implemented in
the lme4qtl package (Ziyatdinov, Vázquez-Santiago, Brunel, Martinez-Perez, Aschard, and
Soria 2018). As no training data are stored, instances of the brokenstick model class are
tiny, often 15–20k.

Features not implemented, but that could be useful in future versions include a separate
impute() function that inputs class brokenstick and returns class mids, a Trelliscope (Hafen
and Schloerke 2020) viewer to quickly peruse hundreds of individuals model fits, an extension
to multivariate time-varying and child-level data, and a generalisation to degree > 1 to
support quadratic and cubic splines.

Methodological advances

The primary modelling task for the user is to set the proper knot locations. One might
envision scenarios where we want to search for the “best” places. It is not yet clear how we
should do this, and how far we could automate knot placement strategies.

We need more insight into the statistical properties of procedures that execute the analysis
as a sequence of steps. The relative pro’s and con’s of choices between multiple imputation



44 Broken Stick Model for Irregular Longitudinal Data

versus random effects are not yet fully understood.

The current procedure assumes that the within-person error is constant across all time points.
However, we might expect that observing more data close to the breakpoint will reduce the
uncertainty of its estimate. In some applications, we might require that the estimate should
equal the observed data value when the observation time coincides with the breakpoints.
While models for such scenarios are considerably more complicated, they could also increase
efficiency.

Conclusion

This paper highlighted various applications of the broken stick model: critical periods, time-
to-time correlation, profile analysis, curve interpolation, multiple imputation and personalised
prediction. These applications certainly do not exhaust the potential of the model. My hope
is that the availability of the software will stimulate creative uses, ideas and experiments.
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