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Imputation of systematically missing
predictors in an individual participant
data meta-analysis: a generalized
approach using MICE

Shahab Jolani,a∗†‡ Thomas P. A. Debray,b‡ Hendrik Koffijberg,b
Stef van Buurenc and Karel G. M. Moonsb

Individual participant data meta-analyses (IPD-MA) are increasingly used for developing and validating mul-
tivariable (diagnostic or prognostic) risk prediction models. Unfortunately, some predictors or even outcomes
may not have been measured in each study and are thus systematically missing in some individual studies of
the IPD-MA. As a consequence, it is no longer possible to evaluate between-study heterogeneity and to estimate
study-specific predictor effects, or to include all individual studies, which severely hampers the development and
validation of prediction models.
Here, we describe a novel approach for imputing systematically missing data and adopt a generalized linear mixed
model to allow for between-study heterogeneity. This approach can be viewed as an extension of Resche-Rigon’s
method (Stat Med 2013), relaxing their assumptions regarding variance components and allowing imputation of
linear and nonlinear predictors.
We illustrate our approach using a case study with IPD-MA of 13 studies to develop and validate a diagnostic
prediction model for the presence of deep venous thrombosis. We compare the results after applying four meth-
ods for dealing with systematically missing predictors in one or more individual studies: complete case analysis
where studies with systematically missing predictors are removed, traditional multiple imputation ignoring het-
erogeneity across studies, stratified multiple imputation accounting for heterogeneity in predictor prevalence,
and multilevel multiple imputation (MLMI) fully accounting for between-study heterogeneity.
We conclude that MLMI may substantially improve the estimation of between-study heterogeneity parameters
and allow for imputation of systematically missing predictors in IPD-MA aimed at the development and validation
of prediction models. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

An important aim in diagnostic and prognostic research is the development of clinical prediction models.
These models aim to predict for an individual whether a certain outcome is present (diagnosis) or will
occur (prognosis), respectively based on multiple predictors observed in the individual. These predictors
may range from individual characteristics, signs and symptoms, to results of more invasive or costly mea-
sures such as imaging, electrophysiology, blood, urine, coronary plaque, or even genetic markers [1–3].
The development of a novel prediction model, diagnostic or prognostic, typically requires a set with so-
called individual participant data (IPD). This dataset contains for each study participant the observed
predictor values and outcomes to be predicted, and is ideally obtained from a prospective cohort study.
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However, during the past decades, the popularity of prediction research has increased and international
collaboration has become more commonplace. Multiple individual participant datasets are therefore fre-
quently combined when developing or validating a novel prediction model. This strategy is also known
as IPD meta-analysis (IPD-MA) [4–9]. Other types of IPD-MA may arise in large cohort studies where
subjects are clustered within the study centers.

A key issue in every IPD-MA is the presence of between-study heterogeneity, that is, systematic dif-
ferences in populations from which samples are included. Heterogeneity in an IPD-MA for prediction
modeling research typically manifests as differences in baseline risks across the individual studies, that
is, the outcome prevalences (for diagnostic models) or outcome incidences (for prognostic models), or
as differences in the predictor-outcome associations. Recently, we proposed a framework for develop-
ing, implementing, and validating a risk prediction model when IPD from multiple studies are available
[8]. This framework introduces internal–external cross-validation to investigate the generalizability of a
prediction model during its development and proposes to pursue homogeneity in predictor-outcome asso-
ciations to improve the model’s generalizability across different but related populations. The presence
of between-study heterogeneity should therefore routinely be assessed when performing an IPD-MA for
developing a prediction model.

Unfortunately, within an IPD-MA, in individual studies, often different predictors or tests may be
measured, for example, because of budget constraints or lack of medical equipment, or local habits, such
that some predictors are not measured in each individual dataset. When combining the individual study
datasets, some predictors are no longer complete in the IPD-MA set and have become systematically
missing in part of the IPD-MA dataset [10, 11]. As a consequence, researchers often choose to exclude
entire studies with one or more missing predictors from the IPD-MA [5]. Alternatively, predictors with
systematically missing values in one or more studies are ignored or excluded from the model development
[12]. It is clear that both approaches are undesirable as available evidence is not optimally used, certainly
if the individual studies are too large or important to be excluded, or the ignored predictors are known
to be important. Moreover, by ignoring or excluding evidence, it becomes difficult or even impossible to
evaluate the presence of between-study heterogeneity in all (potentially) relevant predictor effects, which
may lead to models with decreased predictive performance [8]. It also becomes more difficult to evaluate
the model’s performance across different studies of the IPD-MA, thereby reducing the model’s potential
generalizability [8, 13]. For this reason, imputation strategies are needed to account for systematically
missing data in an IPD-MA aimed at developing or validating prediction models.

Previously, the Fibrinogen studies collaboration proposed a bivariate random effects meta-analysis
model to investigate the association between a certain exposure and disease in an IPD-MA where some
confounders are systematically missing [12]. Their (two-stage) approach calculates a pooled estimate of
the fully adjusted association by borrowing strength from partially adjusted associations and bears simi-
larities with the adaptation method from Steyerberg et al. [14,15]. Unfortunately, this approach requires
all relevant confounders to be included in the statistical model, which may not be desirable when devel-
oping a prediction model. Furthermore, it is unclear how the approach can be extended to provide pooled
estimates of the fully adjusted confounders (i.e., other predictors) and to estimate their between-study
covariance. Finally, because the bivariate model does not generate imputed datasets, its implementa-
tion becomes particularly problematic when applying validation techniques such as internal–external
cross-validation. For this reason, Resche-Rigon et al. proposed a one-stage approach for imputing system-
atically missing continuous predictors in individual studies of an IPD-MA [16]. Their approach adopts
linear mixed effects (multilevel) models with random intercept terms and random slopes to account for
heterogeneity across the included studies in the IPD-MA. Its implementation, however, requires knowl-
edge about the standard errors around the estimated between-study covariance parameters. Unfortunately,
the likelihood function of nonlinear mixed effects models often does not have a closed-form expression.
Therefore second-order derivatives and standard error estimates may become unreliable [17]. In addition,
the usefulness of standard errors as measure of uncertainty around between-study covariance parameters
can be challenged because this uncertainty tends to be heavily skewed (even when log-transformed). This
is one of the major reasons why some software packages for fitting nonlinear mixed effects models (e.g.,
lme4 in R) do not provide estimates of standard errors around between-study covariance parameters. As
a consequence, other approaches are needed to impute systematically missing predictors in an IPD-MA,
certainly when these predictors do not have continuous values.

We here describe a novel imputation method that extends the approach taken by Resche-Rigon et al. to
allow imputation of both continuous and non-continuous predictors that are systematically missing in one
or more individual studies of an IPD-MA. Hereto, we adopt generalized linear mixed effects models and
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departure from using error variance as estimates of uncertainty around between-study covariance param-
eters. Although we focus on the imputation of systematically missing binary predictors, the described
methodology can directly be applied to many other types of missing data (e.g., continuous, ordinal, and
count data). We begin by describing the statistical methodology for imputing linear (e.g., continuous)
and nonlinear (e.g., binary) systematically missing predictors. We subsequently illustrate its implementa-
tion in an empirical example with a large-scale IPD-MA aimed at developing and validating a prediction
model for the diagnosis of deep venous thrombosis. Subsequently, we conduct a simulation study to com-
pare the performance of the novel imputation approach with that of approaches that either exclude entire
studies with missing predictors or completely ignore the presence of between-study heterogeneity dur-
ing imputation. We end by discussing the results and providing general recommendations for properly
dealing with systematically missing predictors in IPD-MA.

2. Methods

In general, the presence of missing data can be described by three mechanisms with different assump-
tions about the probability of missingness. When this probability is identical for all subjects, predictors
are missing completely at random (MCAR). Conversely, missing at random (MAR) occurs when the
probability of missingness depends on the observed information. Finally, missing not at random occurs
when the probability of missingness depends on the predictor itself or on other predictors that have not
been measured conditional on observed data [18].

In the presence of missing data it is common to assume MAR and to apply multiple imputation. This
approach generates several copies of the original dataset and replaces missing values by values drawn
from a multivariate distribution (joint modeling) [19] or from a set of conditional densities (fully con-
ditional specification) [20–22]. In this article, we assume that a multivariate distribution exists and that
draws from it can be generated by iteratively sampling from the conditional distributions. Although these
assumptions are less attractive from a theoretical point of view, they facilitate the implementation of
more advanced analysis models (as compared with joint modeling) [21]. Subsequently, we adopt multi-
variate imputation by chained equations (MICE) [23] to impute non-continuous systematically missing
predictors in an IPD-MA. In particular, we use generalized linear mixed effects models for specify-
ing the conditional distributions and use the Wishart distribution for deriving estimates of uncertainty
around between-study covariance parameters. Finally, we analyze the imputed datasets and pool the
resulting model estimates using Rubin’s rule [24]. We denote the corresponding imputation strategy as
multilevel multiple imputation, or shortly, MLMI. An overview of symbols used in this article is presented
in Appendix A.

2.1. Complete data model

Consider an IPD-MA of i = 1,… ,N studies with j = 1,… ,Ni subjects in the ith study. We denote the
observed outcome y for subject j in study i as yij. Furthermore, we denote the vector of k = 1,… ,K can-
didate predictors for subject j in study i as xij =

[
xij1,… , xijK

]
. Let xij be associated with a K-dimensional

vector of fixed effect parameters 𝜷, and let 𝐮i be an L-dimensional (L < K) vector of random effects for
the ith study. Finally, let vij represent a vector of the variables associated with 𝐮i (typically a subset of
xij). A generalized linear mixed model for the complete data model that accounts for the study-specific
predictor effects can then be defined in the exponential class with the form

f1(yij|𝐮i, 𝜷, 𝜙) = exp{𝜙−1[yij𝜁ij − a(𝜁ij)] + b(yij, 𝜙)}
𝜁ij = xTij𝜷 + vTij𝐮i

𝐮i ∼ MVN (0,𝐓)
(1)

where 𝜙 is a scalar dispersion parameter and a(⋅) represents the link function. The predictor values
xij are assumed to be independent, and the random effects 𝐮i are assumed to follow a multivariate nor-
mal (MVN) distribution with mean vector 0 and variance–covariance matrix 𝐓. Finally, the functions a
and b determine a particular family in the exponential class, such as binomial, normal, or Poisson. For
instance, logistic regression and Poisson regression assume that 𝜙 = 1 such that b(yij, 𝜙) = b(yij), and
f1(yij|𝐮i, 𝜷, 𝜙) = f1(yij|𝐮i, 𝜷) (Table I).

Model (1) can be estimated in R using the lme4 package [25]. The estimated fixed effects terms, that is,
�̂�, can then be extracted using fixef (object) or getME(object, “fixef”). The estimated variance–covariance
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matrix of the fixed effect terms, that is, Var(�̂�), can be extracted using vcov(object). Finally, the estimated
random effects parameter estimates �̂� can be extracted using getME(object,“theta”).

2.2. Imputation model

Suppose a subset of predictors is systematically missing for some studies in an IPD-MA. This implies
that their predictor values are missing for all subjects within the affected studies. Here, we propose a
generalization that can accommodate for many types of predictor values (e.g., binary data, categorical
data, and count data) and adopts a generalized linear mixed model. When a predictor k is systematically
missing in study i, all elements in

[
xi1k,… , xiNik

]
are unknown. We assume the imputation model for each

xijk ∈
[
xi1k,… , xiNik

]
takes the form

f2(xijk|bik, 𝜸k, 𝜑k) = exp{𝜑−1
k [xijk𝜂ijk − c

(
𝜂ijk

)
] + d(xijk, 𝜑k)}

𝜂ijk = zTijk𝜸k + wT
ijkbik

bik ∼ MVN
(
0,𝚿k

) (2)

where zijk is a P-dimensional vector of covariates associated with the fixed effect parameters 𝜸k
included in the imputation model. These covariates typically represent the remaining predictors xijs
(s ≠ k), variables that may have influenced the occurrence of missing data, variables that explain vari-
ance in the candidate predictors, and the outcome yij (or a function of it). Furthermore, 𝜑k is the scale
dispersion parameter associated with covariate xijk, and g(⋅) is the corresponding link function. The Q-
dimensional vector bik represents the random effects in the imputation models and is associated with the
vector of subject-level covariates wijk.

In general, two important issues should be considered when specifying model (2) for a certain miss-
ing data scenario. Firstly, the composition of 𝜸k should be defined as such it increases the plausibility
of the MAR assumption. Hereto, the imputation model may consider to include certain predictors that
are not of interest in the eventual analysis model. Secondly, the imputation model should be more
general than the analysis model to allow inferential congeniality [26]. This implies that all predictors
and outcomes from model (1) should be included in model (2) and that 𝚿k should be equally or less
restricted (e.g., in terms of independence) than 𝐓. As a consequence, if the complete data model aims
to investigate correlation between the random effects of certain predictors (i.e., non-diagonal entries of
𝐓), the imputation model should minimally estimate all entries of 𝚿k that involve the predictors of the
analysis model.

The unknown parameters from model (2) are denoted as 𝜽k and include the fixed effect parameters 𝜸k,
the between-study covariance 𝚿k, and possible dispersion parameters 𝜑k resulting from the link function.
Here, we define 𝚵k as

{
𝚿k, 𝜑k

}
. Note that the scale dispersion parameter 𝜑k = 1 for binary or count

cases, such that 𝚵k then collapses to 𝚿k.

2.2.1. Binary missing predictors. Suppose that the systematically missing predictor follows a Bernoulli
distribution with success probability Pr(xijk = 1) = 𝜋ijk. Choosing the logit transformation of the
probability of success, 𝜂ijk = ln

(
𝜋ijk∕(1 − 𝜋ijk)

)
, as the link function leads to

xijk ∼ Bernoulli
(
𝜋ijk

)
𝜋ijk =

1
1 + exp(−zTijk𝜸k − wT

ijkbik)
bik ∼ MVN(0,𝚿k)

(3)

The unknown parameters from model (3) are 𝜸k and 𝚿k. There is no dispersion parameter such that
𝜽k =

{
𝜸k,𝚵k

}
=
{
𝜸k,𝚿k

}
.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1841–1863
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2.2.2. Continuous missing predictors. The systematically missing predictor xijk is assumed to be nor-
mally distributed with mean zTijk𝜸k +wT

ijkbik and variance 𝜎2
k = 𝜑k and the identity link function, such that

model (2) becomes

xijk = zTijk𝜸k + wT
ijkbik + 𝝐ijk

bik ∼ MVN
(
0,𝚿k

)
𝝐ijk ∼  (

0, 𝜎2
k

) (4)

The unknown parameters from model (4) are 𝜸k, Ψk, and 𝜎2
k . Mixed effect models typically assume

that the error variance 𝜎2
k and the between-study variance 𝚿k are independent. For sake of simplicity,

we assume these parameters are a priori independent. The unknown parameters can then be denoted as
𝜽k =

{
𝜸k,𝚵k

}
where

𝚵k =
⎡⎢⎢⎢⎣
𝚿11k … 𝚿1Qk 0
⋮ ⋱ ⋮ ⋮

𝚿Q1k … 𝚿QQk 0
0 … 0 𝜎2

k

⎤⎥⎥⎥⎦
2.3. The imputation procedure

We distinguish between the imputation of univariate and multivariate systematically missing predictors.
For both types of missing data, MLMI consists of three main steps. First, model (2) is fitted to M studies
where xijk is observed. Second, random draws of 𝜽∗

k are generated in sequence, using �̂�k, Ψ̂k, and 𝜎2
k

(if applicable). Finally, 𝜽∗
k is used to generate imputations for systematically missing predictor xijk. The

following algorithms were implemented as an extension for mice in R (see Appendix B for imputing
binary data).

2.3.1. Univariate systematically missing predictor (one predictor is systematically missing in some stud-
ies). Suppose xijk is the only systematically missing predictor in an IPD-MA. Without loss of generality,
assume xijk is fully observed in M studies (M < N and M > 1 to allow for mixed effects models), and let
xobsijk and xmis

ijk be the fully observed and systematically missing subsets of xijk, respectively. The missing
values are said to be MAR if Pr(Rijk = 1|xobsijk , x

mis
ijk ,𝜽k) = Pr(Rijk = 1|xobsijk ,𝜽k), where Rijk denotes the

response indicator of predictor k for subject j in study i. We consider the situation where MAR represents
a reasonable assumption. The objective is to draw xmis

ijk from its posterior distribution under model (2).
This posterior distribution can be written as

Pr(xmis
ijk |zijk,wijk, x

obs
ijk ) = ∫𝜽k

Pr(xmis
ijk |zijk,wijk, x

obs
ijk ,𝜽k) Pr(𝜽k|zijk,wijk, x

obs
ijk ) 𝜕𝜽k (5)

Following Rubin [24], we propose to draw D values of 𝜽k from the posterior distribution
Pr(𝜽k|zijk,wijk, x

obs
ijk ). For each corresponding draw 𝜽∗

k , we then draw a value of xmis
ijk from the conditional

posterior distribution Pr(xmis
ijk |zijk,wijk, x

obs
ijk ,𝜽k = 𝜽∗

k ).
Drawing from the posterior distribution Pr(𝜽k|zijk,wijk, x

obs
ijk ) requires a prior distribution for 𝜽k. We

use the suitable diffuse prior p
(
𝜸k

)
∝ 1; that is, the density of 𝜸k is uniform between −∞ and +∞.

Also, we apply the standard reference prior p (𝚿−1
k ) ∝ |𝚿−1

k |−(Q+1)∕2. For the continuous case, we further
assume the prior distribution of 𝜎2

k has density proportional to 𝜎−2
k . Under these standard priors, the

posterior distributions of the parameters of a (generalized) linear mixed model are not available in closed
from. We therefore use a large sample approximation. The detailed steps of the imputation procedure are
as follows:

(1) Obtain the estimates of the parameters 𝜸k and 𝚵k by the maximum likelihood (ML) estimator using
the M studies where xijk is observed.

(2) Draw 𝜸∗k from MVN
(
�̂�k, var

(
�̂�k|�̂�k

))
.
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(3) For studies where xijk is observed, obtain bik and calculate the Q × Q dimensional matrix 𝚲k =∑M
i=1 bikbTik.

(4) Draw 𝚿∗−1

k from its posterior distribution, that is, a Wishart distribution with M degrees of freedom
and a scale matrix parameter equal to 𝚲−1

k .
(5) For (N −M) studies where xijk is systematically missing, draw b∗ik from MVN

(
0,𝚿∗

k

)
.

(6) For a binary predictor xijk

(a) Draw x∗ijk for each study i with systematically missing binary predictor xijk using logit−1(zijk𝜸
∗
k+

z∗ijkb∗ik).

(7) For a continuous predictor xijk

(a) Calculate 𝜎2∗
k = (df 𝜎k

2)∕d by drawing d from a 𝜒2 distribution with df =
∑M

l=1 Nl −P degrees
of freedom.

(b) Draw x∗ijk for each study i with systematically missing continuous predictor xijk using x∗ijk =
zijk𝜸

∗
k + z∗ijkb∗ik + 𝝐∗ijk where 𝝐∗ijk ∼  (

0, 𝜎2∗

k

)
.

The algorithm proposed here is similar to the algorithm previously proposed by Resche-Rigon et al.
[16]. However, we do not assume that 𝚵k is (log-)normally distributed and instead adopt a Wishart distri-
bution to accommodate for the asymmetry in the distribution of the estimator. Finally, our algorithm is not
limited to a continuous predictor and can be applied to other types of systematically missing predictors
such as binary, ordinal, nominal, or count variables.

2.3.2. Multivariate systematically missing predictors (two or more predictors are systematically missing
in some studies). Suppose L predictors of xij (2 ⩽ L < K) are systematically missing in some stud-
ies. According to the MICE algorithm, each systematically missing predictor is imputed in turn using
the latest imputed values of the other predictors. The procedure is then iterated for a sufficient number
of times.

For each systematically missing predictor xijl with l = 1,… ,L, a value of 𝜽l is first drawn. Afterwards,
the missing part of xijl is imputed using the drawn value of the corresponding parameters. Similar to the
univariate case, the fully observed and systematically missing parts of xijl are denoted respectively by xobsijl

and xmis
ijl . Starting from an initial imputation step, the tth iteration involves successively drawing from

𝜽∗(t)
1 ∼ Pr(𝜽1|z(t−1)

ij1 , xobsij1 )

xmis(t)
ij1 ∼ Pr(xmis

ij1 |z(t−1)
ij1 , xobsij1 ,𝜽

∗(t)
1 )

⋮

𝜽∗(t)
L ∼ Pr(𝜽L|z(t)ijL, x

obs
ijL )

xmis(t)
ijL ∼ Pr(xmis

ijL |z(t)ijL, x
obs
ijL ,𝜽

∗(t)
L )

where zijl typically consists of the predictors xijs (s ≠ l) that were imputed in the previous steps,
the outcome yij, and other variables that may have influenced the occurrence of missing data or explain
variability in the predictor values. Executing the cycle repeatedly for a sufficient number of iterations
creates one set of the completed data. Repeating the whole procedure D times produces D versions of the
imputed datasets for post-imputation analyses.

2.4. Combining the repeated complete data estimates and variances

After imputation, the resulting D versions of the completed data are analyzed by complete data model
(1). Suppose �̂�

(d)
denotes the estimated values of 𝜷 in model (1) from dth imputed dataset, and Var(�̂�(d))

denotes their associated variance–covariance matrix. The combined estimate of 𝜷 and its variance can be
obtained using Rubin’s rule [24, 27]. The overall estimate of 𝜷 is simply the average

�̄� = 1
D

D∑
d=1

�̂�
(d)

(6)

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1841–1863
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with total variance

Var(�̄�) = 1
D

D∑
d=1

Var
(
�̂�
(d)) +

( D + 1
D2 − D

) D∑
d=1

(
�̂�
(d) − �̄�

)(
�̂�
(d) − �̄�

)T
(7)

Similarly, the overall estimate of the variance–covariance matrix of random effects parameters is
given as

�̄� = 1
D

D∑
d=1

�̂�(d) (8)

Equation 7 indicates Var(�̄�) that approximates the average of within-impuation covariances Var(�̂�(d))
as D → ∞. In general, the efficiency of an estimate based on D imputations is approximately(

1 + 𝛾

D

)−1
(9)

where 𝛾 is the fraction of missing information for the quantity being estimated [24]. The fraction 𝛾

quantifies how much more precise the estimate might have been if no data had been missing.

3. Empirical example

In order to illustrate the approaches, we describe a clinical example involving the diagnosis of deep vein
thrombosis (DVT) presence. DVT is a blood clot that forms in a vein in the body and may lead to pul-
monary embolism, preventing oxygenation of the blood and potentially causing death. Clinical DVT
diagnosis is not straightforward. For this reason, multivariable diagnostic prediction models have been
developed to predict the probability of presence of DVT in suspected patients. A well-known example
is the model developed by Oudega et al., which includes the results from history taking, physical exam-
ination, and D-dimer testing for ruling out DVT in primary care [28]. It is, however, unclear to which
extent this model is generalizable, as it is possible that some of its included predictor effects differ across
study populations.

In this case study, we aimed to investigate the overall strength of association and the presence of
between-study heterogeneity in the predictors of the Oudega model. Hereto, we used an IPD meta-
analysis of 13 studies conducted for diagnosing DVT in patients with a suspected DVT (Table II). The
IPD-MA contains a total of 10, 002 subjects of which 1864 (18.6%) truly have DVT as established by

Table II. Pattern of the missing covariates in the empirical example.

Study 1 2 3 4 5 6 7 8 9 10 11 12 13 Model
Size 1028 814 153 1756 791 1075 429 325 1295 436 541 550 809
Country Type NL NL CA NL NL CA CA SE NL US CA CA CA

sex d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
malign d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
par d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
surg d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
tend d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
leg d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
pit d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
vein d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
adiag d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
cdif3 d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
age c ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
coag d ✓ ✓ ✓ ✓ ✓ ✓ ✓
notraum d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
oachst d ✓ ✓ ✓ ✓ ✓
ddimd d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: The ✓-symbol indicates whether the corresponding predictor has been measured in a certain study and whether it
was included in the Oudega model. Systematically missing predictor variables are printed in bold. Countries: NL, The
Netherlands; CA, Canada; SE, Sweden; US, United States. Variable types: d, dichotomous; c, continuous.
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the reference standard [29]. The following 11 predictors were measured in all studies: age, male gender
(sex), active malignancy (malign), paresis (par), recent surgery or bedridden (surg), localized tenderness
deep venous system (tend), entire leg swollen (leg), difference in calf circumference >= 3 cm (cdif3),
pitting edema (pit), vein distension (vein), and alternative diagnosis present (adiag). Furthermore, four
binary predictors were systematically missing in one or more studies: D-dimer positive (ddimd), fam-
ily history of thrombofilia (coag), no leg trauma present (notraum), and oral contraceptive use (oachst).
The Oudega model consists of a combination of fully observed (sex, malign, surg, vein, and cdif3) and
systematically missing (notraum, oachst, and ddimd) predictors.

3.1. Dealing with missing data

We adopted four approaches to investigate the presence of between-study heterogeneity in the predictors
of the Oudega model. First, we performed a complete case analysis (CCA) where studies with system-
atically missing predictors were removed. This approach assumes MCAR for systematically missing
predictors. Secondly, we implemented a naive imputation approach that assumes MAR and completely
ignores heterogeneity across studies. Hereto, we used the logreg imputation procedure from mice in R
[23, 30]. We denote this approach as traditional multiple imputation (TMI). An alternative, but simi-
lar approach, may allow for heterogeneous intercept terms in the imputation model by dummy-coding
(rather than discarding) the study identification number [11]. This approach is denoted as stratified multi-
ple imputation (SMI). Because study-specific intercept terms of the imputation model are unidentifiable
for studies with systematically missing predictors, the average of the observed study-specific (stratified)
intercept terms is used in such cases. Finally, we adopted MLMI as an alternative approach that accounts
for heterogeneity across studies. This approach allowed for joint random effects on all unknown param-
eters of the imputation model (Section 2) and was implemented in the R-package mice [30]. For TMI,
SMI, and MLMI, the systematically missing data were multiply imputed using information from all 15
predictors and the outcome. Hereby, we allowed for 20 iterations of the Gibbs algorithm and generated
20 imputed replications of the original dataset.

The MLMI approach allowed for joint random effects on all input variables to ensure congeniality
with subsequent analyses. This resulted in imputation models with 120 unknown heterogeneity and 15
unknown fixed effects parameters (MLMI1). We also explored a simplified version of MLMI where ran-
dom effects were removed for sex, surg, vein, and oachst. The resulting imputation models (MLMI2) then
consisted of 10 heterogeneity and 15 fixed effects parameters.

3.2. Analysis models

We estimated two mixed effects models in the completed data using all predictors from the Oudega
model. In the first analysis model (Analysis 1), independent random effects were placed on the inter-
cept term and all predictors (model D in [31]). This corresponded to a mixed effect model with nine
heterogeneity and nine fixed effects parameters. In the second analysis model (Analysis 2), independent
random effects were placed on the intercept term and a subset of predictors. In particular, homogeneity
was assumed for regression coefficients where 𝜏 was relatively small for all approaches. The analysis
model then consisted of five heterogeneity and nine fixed effects parameters. Because all analysis mod-
els were rather complex, we allowed for a maximum of 20, 000 function evaluations in the optimization
process of the likelihood functions. Estimates for the regression coefficients (𝛽), corresponding standard
errors (SE(𝛽)), and between-study standard deviation (𝜏) were obtained using the glmer procedure from
the R-package lme4 1.1-7 [25]. All analyses were performed in R 3.1.1 on a 64-bit operating system with
linux 3.13.0-24-generic.

3.3. Results (Analysis 1)

Results demonstrate that estimation of the analysis models was problematic, leading to poor convergence
rates for CCA, TMI, SMI, and MLMI (Table III). Furthermore, substantial computation time was needed
for applying MLMI and analyzing the resulting datasets. Because heterogeneity was not observed in all
predictors, we decided to remove random effects for sex, surg, vein, and oachst in the complete data
model of Analysis 2 and in the imputation model of MLMI2.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1841–1863

1849



S. JOLANI ET AL.

Table III. Results from the empirical example.

Analysis 1 Analysis 2

Approach CCA TMI SMI MLMI1 CCA TMI SMI MLMI1 MLMI2

No. of studies 4 13 13 13 4 13 13 13 13
No. of subjects 4870 10, 002 10, 002 10, 002 4870 10, 002 10, 002 10, 002 10, 002

(Intercept)
𝛽 −4.96 −5.00 −4.89 −4.42 −4.96 −5.00 −4.89 −4.42 −4.46
SE(β̂) 0.24 0.21 0.20 0.28 0.26 0.21 0.20 0.28 0.29
𝜏 0.29 0.46 0.40 0.77 0.29 0.46 0.40 0.77 0.81

sex
𝛽 0.56 0.47 0.44 0.45 0.56 0.47 0.44 0.45 0.45
SE(β̂) 0.09 0.06 0.06 0.07 0.09 0.06 0.06 0.07 0.07
𝜏 0.00 0.00 0.01 0.05 — — — — —

malign
𝛽 0.37 0.76 0.68 0.83 0.37 0.76 0.68 0.83 0.82
SE(β̂) 0.13 0.15 0.14 0.16 0.13 0.16 0.14 0.16 0.16
𝜏 0.00 0.36 0.31 0.41 0.00 0.36 0.31 0.42 0.41

surg
𝛽 0.41 0.36 0.35 0.37 0.41 0.37 0.35 0.37 0.37
SE(β̂) 0.12 0.09 0.09 0.08 0.12 0.09 0.09 0.08 0.09
𝜏 0.00 0.00 0.00 0.00 — — — — —

vein
𝛽 0.43 0.44 0.44 0.45 0.43 0.43 0.43 0.45 0.44
SE(β̂) 0.10 0.09 0.09 0.10 0.10 0.08 0.08 0.08 0.08
𝜏 0.00 0.09 0.09 0.13 — — — — —

notraum∗
𝛽 0.53 0.54 0.56 0.40 0.53 0.54 0.56 0.40 0.41
SE(β̂) 0.12 0.11 0.10 0.13 0.12 0.11 0.10 0.13 0.12
𝜏 0.00 0.03 0.02 0.18 0.00 0.03 0.01 0.18 0.15

oachst∗
𝛽 0.59 0.66 0.55 0.50 0.59 0.66 0.55 0.50 0.50
SE(β̂) 0.17 0.15 0.17 0.17 0.17 0.15 0.17 0.15 0.18
𝜏 0.00 0.00 0.00 0.13 — — — — —

ddimd∗
𝛽 2.68 2.69 2.71 2.06 2.68 2.69 2.71 2.05 2.07
SE(β̂) 0.18 0.15 0.15 0.34 0.19 0.15 0.15 0.34 0.33
𝜏 0.17 0.26 0.26 1.07 0.17 0.26 0.26 1.07 1.09

cdif3
𝛽 1.09 1.12 1.11 1.15 1.09 1.12 1.11 1.16 1.15
SE(β̂) 0.14 0.08 0.08 0.09 0.14 0.08 0.08 0.09 0.09
𝜏 0.21 0.15 0.15 0.19 0.21 0.15 0.15 0.19 0.19

Comp. time† Imputation NA 5 m 6 m 1660 h NA 5 m 6 m 1660 h 80 h
Comp. time‡ Analysis 23 s 31 m 29 m 25 m 23 s 9 m 9 m 11 m 11 m
Convergence Analysis 0∕1 5∕20 4∕20 8∕20 1∕1 19∕20 20∕20 18∕20 20∕20

Note: Estimates are based on a mixed effect model with independent random effects for all regression coefficients.
∗ Corresponding variable was systematically missing in one or more studies.
† Total computation time needed for generating 20 imputed datasets.
‡ Total computation time needed for estimating the analysis model in each (imputed) dataset and combining the results
using Rubin’s rule (if applicable).
1 Joint random effects in the imputation model were placed on all model parameters.
2 Joint random effects in the imputation model were placed on the intercept term, malign, cdif3, notraum, and ddimd.
s, seconds; m, minutes; h, hours; NA, not applicable; CCA, complete case analysis; TMI, traditional multiple imputation;
SMI, stratified multiple imputation; MLMI, multilevel multiple imputation; SE, standard error.

3.4. Results (Analysis 2)

In this second analysis, convergence issues basically disappeared, while results remained fairly similar
even when the imputation model of MLMI was further simplified (MLMI2).
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Estimates of regression coefficients (representing the predictor effects) were quite similar for all meth-
ods, except for malign (0.37 for CCA vs. 0.76 for TMI and 0.83 for MLMI) and ddimd (2.05 for MLMI
vs. 2.68 for CCA and 2.69 for TMI). The strongest similarities were found between TMI and SMI, which
also yielded similar estimates of between-study heterogeneity and error variance. Surprisingly, MLMI
and CCA achieved similar errors of estimated regression coefficients, except for ddimd where it increased
from 0.19 (CCA) to 0.34 (MLMI). It is likely that the analysis models of MLMI did not fully benefit
from the additional IPD because the underlying imputation models were very complex (in this example,
they involved estimating 45 heterogeneity parameters and 9 fixed effects parameters).

Complete data on the predictor variables from the Oudega model were only available for studies 1,
4, 5, and 9. The remaining studies were typically initiated by different investigators in other countries
(including Canada, Sweden, and USA, Table II) . It is therefore plausible that the presence of system-
atically missing predictors did not occur completely at random and that CCA may have led to a more
homogeneous set of studies. This effect is also illustrated in Table III, where estimates of between-study
heterogeneity were lowest for CCA and substantially larger for TMI, SMI, and MLMI. For instance, the
between-study standard deviation for malign increased from 0.00 (CCA) to 0.36 (TMI) and 0.41 (MLMI)
in Model 1. Although the estimated predictor effects from CCA are likely to be representative for the
Netherlands (because of the low degree of between-study heterogeneity and the relatedness of the remain-
ing studies), they may not generalize well towards new study populations. Unfortunately, this potential
deficiency could not be identified with CCA. The multiple imputation approaches revealed that the pre-
dictor effects of the Oudega model substantially vary when all studies are included. Researchers aiming
to develop a novel prediction model for diagnosing DVT should therefore carefully consider whether
geographical adjustments are needed.

4. Simulation study

A set of simulation studies was conducted to evaluate the performance of MLMI in the presence of sys-
tematically missing predictors. The number of Monte Carlo simulations was set to 500 for each scenario.
In the following, we describe the several stages involved.

4.1. Data generation

In each simulation study, we began by generating complete datasets according to

logit{Pr(yij = 1)} = −2.321 + 1.112 xij1 + 1.375 xij2 + ui0 + ui1xij1 + ui2xij2

𝐮i ∼ MVN
⎛⎜⎜⎝0,

⎡⎢⎢⎣
𝜏2

0 𝜏01𝜏02
𝜏01 𝜏2

1𝜏12
𝜏02 𝜏12𝜏

2
2

⎤⎥⎥⎦
⎞⎟⎟⎠ .

where 𝜏0 = 0.573, 𝜏1 = 0.389, 𝜏2 = 0.186, 𝜏01 = −0.192, 𝜏02 = −0.037, and 𝜏12 = 0.039. These
parameter values were taken from the DVT data with malign and cdif3 as predictors x1 and x2, respec-
tively. For each study, the predictors xij1 and xij2 were simulated from a bivariate binary process with
marginal probability 𝜋i = (𝜋ij1, 𝜋ij2)T and Corr(xij1, xij2) = 𝜌i. These parameter values were also taken
from the DVT data and correspond to low (xij1) and medium (xij2) success probabilities (Appendix C).
Finally, the complete dataset was simulated for two scenarios with small (N = 6) and medium (N = 13)
number of studies. We generated a fixed number of 500 subjects for each study, leading to a total sample
size of 3000 (N = 6) and 6500 (N = 13).

We defined additional scenarios by considering different patterns of systematically missing predic-
tor variables. First, we considered a univariate pattern where x1 was systematically missing across some
studies. We also implemented a bivariate pattern where either x1 or x2 was systematically missing. For
each scenario, we evaluated a low rate (20%) and a medium rate (50%) of missingness where the cor-
responding predictor(s) were chosen to be systematically missing under an MCAR mechanism. For all
scenarios, we calculated computation times for generating one imputed dataset (Appendix D).
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Table IV. Estimates of the fixed effect parameters in the simulation study.

(Intercept) Predictor 1 Predictor 2
𝛽0 = −2.321 𝛽1 = 1.112 𝛽2 = 1.375

Parameter Est. RB RMSE CR Est. RB RMSE CR Est. RB RMSE CR

One systematically missing predictor (x1)

Scenario 1: 6 studies, 1 study missing (≈20%)
REF −2.343 0.009 0.265 88 1.116 0.004 0.230 93 1.391 0.012 0.135 94
CCA −2.351 0.013 0.301 85 1.124 0.011 0.257 93 1.394 0.014 0.149 93
TMI −2.341 0.009 0.266 88 1.113 0.001 0.253 92 1.392 0.012 0.136 95
SMI −2.339 0.008 0.266 88 1.121 0.008 0.254 91 1.391 0.012 0.136 94
MLMI −2.347 0.011 0.266 89 1.127 0.014 0.253 93 1.393 0.013 0.137 95
Scenario 2: 6 studies, 3 studies missing (≈50%)
REF −2.347 0.011 0.246 89 1.112 0.000 0.240 93 1.381 0.004 0.135 95
CCA −2.372 0.022 0.358 79 1.128 0.015 0.323 94 1.392 0.013 0.189 95
TMI −2.348 0.012 0.245 90 1.106 0.005 0.329 88 1.384 0.007 0.136 95
SMI −2.345 0.010 0.244 90 1.109 0.003 0.328 88 1.382 0.005 0.136 95
MLMI −2.368 0.020 0.261 92 1.124 0.011 0.359 91 1.386 0.008 0.140 96
Scenario 3: 13 studies, 3 studies missing (≈20%)
REF −2.322 0.001 0.161 93 1.108 0.003 0.146 94 1.371 0.003 0.090 95
CCA −2.333 0.005 0.180 92 1.114 0.002 0.164 94 1.374 0.000 0.102 95
TMI −2.320 0.000 0.161 93 1.098 0.012 0.164 93 1.373 0.001 0.091 95
SMI −2.315 0.002 0.161 93 1.107 0.004 0.166 93 1.373 0.002 0.091 96
MLMI −2.325 0.002 0.161 93 1.114 0.002 0.167 95 1.372 0.002 0.091 96
Scenario 4: 13 studies, 7 studies missing (≈50%)
REF −2.326 0.002 0.168 91 1.113 0.001 0.156 94 1.374 0.000 0.091 94
CCA −2.323 0.001 0.251 86 1.113 0.001 0.238 91 1.385 0.007 0.139 93
TMI −2.320 0.000 0.171 89 1.085 0.024 0.245 84 1.379 0.003 0.094 95
SMI −2.316 0.002 0.171 89 1.100 0.011 0.241 86 1.376 0.001 0.094 96
MLMI −2.330 0.004 0.175 91 1.109 0.002 0.251 90 1.380 0.004 0.096 95

Two systematically missing predictors (x1 and x2)

Scenario 5: 13 studies, 3 studies missing (≈20%)
REF −2.327 0.003 0.169 92 1.113 0.001 0.153 93 1.381 0.005 0.093 93
CCA −2.329 0.004 0.190 91 1.116 0.004 0.177 94 1.379 0.003 0.109 92
TMI −2.324 0.001 0.170 91 1.106 0.005 0.166 91 1.379 0.003 0.099 93
SMI −2.324 0.001 0.170 91 1.110 0.002 0.165 92 1.383 0.006 0.099 93
MLMI −2.329 0.003 0.171 91 1.113 0.001 0.168 94 1.383 0.006 0.101 94
Scenario 6: 13 studies, 7 studies missing (≈50%)
REF −2.317 0.002 0.168 94 1.097 0.013 0.154 95 1.381 0.004 0.095 94
CCA −2.324 0.001 0.244 87 1.105 0.006 0.228 91 1.379 0.003 0.137 95
TMI −2.308 0.006 0.170 92 1.082 0.027 0.192 87 1.372 0.002 0.108 93
SMI −2.313 0.003 0.171 93 1.087 0.022 0.198 88 1.382 0.006 0.107 93
MLMI −2.319 0.001 0.173 93 1.091 0.019 0.202 91 1.383 0.006 0.110 95

Note: REF indicates the results that were obtained before missingness was introduced and can be viewed as a benchmark
for comparing the performance of methods that are applied after missingness is introduced: complete case analysis
(CCA), traditional multiple imputation (TMI), stratified multiple imputation (SMI), and multilevel multiple imputation
(MLMI). The following values are given: mean of estimates (Est.), relative bias (RB), root mean squared error (RMSE),
and the coverage rate (CR) of the nominal 95% CI.

4.2. Data analysis

The generated datasets with systematically missing predictors were completed using CCA, TMI, SMI, or
MLMI. To ensure that imputations could be generated within a reasonable amount of time, we allowed
for 10 cycles in the imputation algorithms and chose D = 5. The completed datasets were then analyzed
by estimating a mixed effect model with joint random effects on all regression coefficients. This model
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Table V. Estimates of the random effect parameters in the simulation study.

(Intercept) Predictor 1 Predictor 2
𝜏0 = 0.573 𝜏1 = 0.389 𝜏2 = 0.186

Parameter Mean Median Mean Median Mean Median

One systematically missing predictor (x1)

Scenario 1: 6 studies, 1 study missing (≈20%)
REF 0.505 0.494 0.362 0.356 0.204 0.170
CCA 0.481 0.469 0.354 0.342 0.201 0.162
TMI 0.499 0.486 0.334 0.316 0.204 0.171
SMI 0.500 0.488 0.334 0.317 0.204 0.172
MLMI 0.504 0.494 0.372 0.343 0.211 0.172
Scenario 2: 6 studies, 3 studies missing (≈50%)
REF 0.492 0.484 0.352 0.341 0.207 0.176
CCA 0.403 0.384 0.319 0.263 0.227 0.156
TMI 0.475 0.460 0.269 0.240 0.210 0.170
SMI 0.477 0.463 0.270 0.241 0.208 0.170
MLMI 0.506 0.484 0.459 0.320 0.242 0.197
Scenario 3: 13 studies, 3 studies missing (≈20%)
REF 0.529 0.521 0.363 0.355 0.192 0.173
CCA 0.524 0.514 0.368 0.367 0.200 0.172
TMI 0.521 0.517 0.322 0.314 0.191 0.173
SMI 0.521 0.515 0.329 0.319 0.190 0.174
MLMI 0.524 0.519 0.358 0.345 0.193 0.173
Scenario 4: 13 studies, 7 studies missing (≈50%)
REF 0.521 0.521 0.368 0.365 0.193 0.168
CCA 0.482 0.463 0.356 0.341 0.200 0.155
TMI 0.497 0.497 0.255 0.238 0.192 0.164
SMI 0.497 0.498 0.259 0.238 0.192 0.167
MLMI 0.507 0.508 0.368 0.307 0.199 0.175

Two systematically missing predictors (x1 and x2)

Scenario 5: 13 studies, 3 studies missing (≈20%)
REF 0.541 0.535 0.368 0.368 0.110 0.178
CCA 0.530 0.524 0.367 0.372 0.105 0.169
TMI 0.532 0.530 0.337 0.330 0.111 0.169
SMI 0.533 0.527 0.341 0.333 0.112 0.169
MLMI 0.537 0.533 0.360 0.350 0.112 0.174
Scenario 6: 13 studies, 7 studies missing (≈50%)
REF 0.531 0.527 0.354 0.354 0.109 0.170
CCA 0.481 0.479 0.344 0.332 0.086 0.163
TMI 0.510 0.510 0.288 0.275 0.098 0.148
SMI 0.511 0.508 0.295 0.288 0.099 0.149
MLMI 0.521 0.517 0.345 0.327 0.110 0.162

Note: REF indicates the results that were obtained before missingness was intro-
duced and can be viewed as a benchmark for comparing the performance of methods
that are applied after missingness is introduced: complete case analysis (CCA),
traditional multiple imputation (TMI), stratified multiple imputation (SMI), and mul-
tilevel multiple imputation (MLMI). The following values are given: mean and
median of the estimates.

was fitted using the glmer function of lme4 in R [25], by adopting ML estimation. Finally, the parameter
estimates from each imputed dataset were pooled using Rubin’s rule [24].

We subsequently assessed the distinctive and relative merits of each imputation procedure by reporting
the empirical mean of the parameter estimates, the relative bias, the root mean squared error (RMSE),
and the coverage rate (CR) of nominal 95% CI for all model parameters of the analysis model. Because
ML estimation is known to yield downwardly biased estimates of variance parameters when relatively
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few studies are at hand [32,33], the simulation setup values may not always reflect a realistic benchmark
for comparing the performance of the imputation models. In particular, performance issues in the anal-
ysis model may not necessarily be related to the adopted imputation approach. For this reason, we also
include an analysis model that is based on the full data; that is, the generated data before missingness
was introduced (REF).

4.3. Results

4.3.1. Fixed effects (Table IV). No substantial bias was found in estimates of 𝜷. In particular, the relative
bias was below 3% for all imputation approaches and similar to REF (i.e., the mixed effect model that
was estimated before missingness was introduced). We noticed lowered coverage rates for CCA, TMI,
and SMI particularly in scenarios where few studies with full observations were at hand (e.g., scenarios
1, 2, 4, and 6). Coverage issues are also reflected by the RMSE, which was largest for CCA and tended to
increase with an increase in missingness rate. For 𝛽0 and fully observed predictor 𝛽2, the RMSE of TMI,
SMI, and MLMI tended to agree with the RMSE of REF. However, for systematically missing predictor
𝛽1, the RMSE substantially inflated for all approaches when x1 was missing in many studies (scenarios
2, 4, and 6). In these scenarios, the CR of TMI declined to around 85%, while it was still above 90% for
MLMI. In the other scenarios (scenarios 1, 3, and 5), the CR of MLMI achieved the nominal level and
was always higher than the other approaches.

4.3.2. Random effects (Table V). As anticipated, some biases were found in estimates of 𝜏0, 𝜏1, and
𝜏2 when applying REF. This is likely related to the fact that ML estimation was used for fitting the
statistical models, which is known to yield downwardly biased estimates of variance parameters. We
therefore considered the estimates of REF as gold standard for comparing estimates of CCA, TMI, SMI,
and MLMI.

For heterogeneity in the intercept term (i.e., 𝜏0), we noted a downward bias when adopting CCA, TMI,
or SMI. This bias tended to increase with larger missingness rates (scenarios 2, 4, and 6). No evidence
of such bias was found for MLMI, and corresponding estimates were very close to REF. Similar results
were obtained for estimates of heterogeneity in 𝛽1 (i.e., 𝜏1). For example, in scenario 4, TMI yielded
an estimate for 𝜏1 of 0.255 as compared with 0.368 (REF), 0.356 (CCA), and 0.368 (MLMI). As an
exception, 𝜏1 tended to be severely overestimated by MLMI (0.459 vs. 0.352 for REF) when few stud-

Figure 1. Boxplots of estimated random effects parameters. All boxplots are based on 500 simulation runs.
The horizontal line indicates the true value of between-study heterogeneity. REF indicates the results that were
obtained before missingness was introduced and can be viewed as a benchmark for the multiple imputation
approaches: complete case analysis (CCA), traditional multiple imputation (TMI), stratified multiple imputation

(SMI), and multilevel multiple imputation (MLMI).
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ies were available (scenario 2). This discrepancy, however, disappeared when comparing the medians
(0.320 for MLMI vs. 0.341 for REF) across all simulations of scenario 2. MLMI may thus sometimes
lead to very extreme estimates of between-study heterogeneity for systematically missing predictors
when few studies are available. This is also illustrated in Figure 1 where the skewness of random effects
estimates for MLMI decreases when more studies are at hand (scenario 4). It is likely that for sce-
nario 2, the imputation and analysis models were over-parameterized as they involved estimation of six
heterogeneity parameters (i.e., 𝐓) using information from merely three studies. Finally, for heterogene-
ity parameter 𝜏2, the bias was relatively low and only lead to substantial overestimation in scenario 2
(CCA and MLMI).

4.4. Conclusion

In general, none of the investigated methods resulted in biased estimates of fixed effect parameters.
However, the CI coverage rates of the fixed effects estimates were marginally lower for the naive meth-
ods CCA, TMI, and SMI. For these methods, the random effect parameters were also underestimated,
whereas MLMI maintained satisfactory performance. MLMI required, however, substantially more com-
putation time to generate an imputed dataset as compared with TMI and SMI. In summary, simulations
demonstrated that the implementation of MLMI for imputing systematically missing predictors lead to
increased performance at the cost of computation time.

5. Discussion

Meta-analysis of multiple individual participant datasets has become increasingly popular for develop-
ing and validating risk prediction models. In general, IPD-MA may substantially improve the predictive
performance of a developed model across different participant populations and allows to validate a devel-
oped model directly in a variety of different datasets [8, 9]. Unfortunately, the individual studies of an
IPD-MA often provide to varying extents different predictors such that they may become systematically
missing in one or more individual studies of the IPD-MA. Although several imputation strategies have
been proposed for dealing with missing data within a single dataset [23], few solutions currently exist to
accommodate for missing data in an entire study of an IPD-MA [12, 16].

Using both empirical and simulation data, we compared three different strategies to account for
systematically missing predictors in an IPD-MA. The first strategy assumes MCAR for systemati-
cally missing predictors and performs CCA where studies with systematically missing predictors are
excluded. The second strategy implements a naive imputation approach that assumes MAR and does
not account for heterogeneity across studies (TMI). The third strategy also assumes MAR and allows
for heterogeneity in predictor prevalences (SMI). The final strategy adopts our MLMI approach that
fully accounts for heterogeneity across studies. In contrast to previously proposed approaches [16], our
generalized approach for dealing with systematically missing predictors in an IPD-MA can directly be
implemented to impute linear (e.g., continuous) and nonlinear (e.g., binary or count data) predictors.
Furthermore, it no longer requires (typically unreliable) estimates of standard errors around between-
study covariance parameters. Hereby, it also avoids the need to obtain second-order derivatives allowing
the implementation of more efficient estimation procedures that require less computational resources
(e.g., method-of-moments estimators).

5.1. Complete case analysis

In general, the implementation of CCA is only justified when data are MCAR. However, as we have
demonstrated in our simulation study, results from CCA are suboptimal even when the MCAR assumption
does hold. The main reason for this pitfall is that estimating the analysis model for CCA is difficult when
few studies remain in the final dataset (see, for instance, simulation scenarios 1, 2, 4, and 6). In such sce-
narios, the analysis model may become over-parameterized and suffer from convergence issues. Although
this problem could partially be resolved by adopting restricted ML or penalized quasi-likelihood
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estimation [34, 35], these strategies are unlikely to fully overcome the lack of data, particularly when
many studies are excluded.

As anticipated, the CCA approach became completely unreliable when the MCAR assumption did not
hold. In our empirical example, it leads to a small subset of studies that were more related and did not show
evidence of potential between-study heterogeneity. As a consequence, the generalizability of estimated
predictor effects was limited, and the presence of between-study heterogeneity for systematically missing
predictors could no longer be evaluated. In addition, the analysis model failed to converge, casting doubt
on the validity of the obtained results.

In summary, the use of CCA is strongly discouraged when the missingness of predictors depends
on observed data and may substantially hamper the development or validation of a prediction model.
The use of CCA can also be unfavorable when missingness occurs completely at random, as the
removal of many studies (⩾50%) may substantially hamper the estimation of standard errors and
between-study heterogeneity.

5.2. Naive multiple imputation (TMI and SMI)

Although TMI and SMI adopt different assumptions about the clustering of subjects within studies,
both approaches lead to similar results in our empirical example and simulation studies. We found
that they tend to mask the actual degree of between-study heterogeneity and may lead to overopti-
mistic standard errors of predictor effects in the analysis models. These performance issues can be
viewed as a direct consequence of ignoring (most elements of) between-study heterogeneity during
imputation, leading to uncongeniality between the imputation and analysis model. In particular, the
imputation models assume fixed effects for all regression coefficients (TMI) except the intercept term
(SMI), such that imputed datasets become more homogeneous. Because SMI allows for heterogene-
ity in the prevalence of a missing predictor, it slightly outperforms TMI, which completely disregards
between-study heterogeneity.

In summary, the use of SMI and particularly TMI is discouraged and may lead to a detrimental
selection of important predictors, particularly when homogeneity of predictor effects is pursued. Dur-
ing model validation, they may lead to estimates of model performance that show little variation across
studies (as heterogeneity of predictor effects is masked) and therefore incorrectly promote a model’s
generalizability [13].

5.3. Multilevel multiple imputation

We found that MLMI was the optimal approach in terms of coverage (predictor effects) and bias (between-
study variability of predictor effects). Even when the MCAR assumption is justified (and CCA is a
reasonable approach), MLMI still outperformed all other approaches. When the MCAR assumption is no
longer justified, MLMI preserves a strong degree of between-study heterogeneity in predictor effects, and
allows for more complicated (and congenial) analysis models. For this reason, MLMI models are crucial
to safeguard the development and validation of generalizable prediction models when some predictors
are systematically missing across individual studies in an IPD-MA.

The implementation of our proposed approach, that is, MLMI, however, also has some limita-
tions. First, multilevel models involve many unknown parameters, particularly when random effects are
assumed for all explanatory variables. As a consequence, it is possible that some imputation models run
into convergence problems, leading to improper imputation (which may introduce bias in subsequent
analyses). The number of random effects is particularly problematic when the number of studies with
complete data on all predictors is limited (as seen in scenarios 2 and 4 in the simulation study). For this rea-
son, Resche-Rigon et al. previously suggested to place random effects on the intercept term and additional
random effects on the exposure(s) of interest. Further simplifications are possible by assuming indepen-
dent random effects in the imputation model. Alternatively, it is possible to only impute those predictors
for which at least, say, three studies are available that have included it. A second limitation of MLMI is

1856

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1841–1863



S. JOLANI ET AL.

its reliance on ML estimation, which is known to yield downwardly biased estimates of variance param-
eters when few studies are included by the IPD-MA [32,33]. This implies that multiply imputed datasets
may not fully capture all relevant uncertainties and that subsequent analyses could still underestimate
error variance and between-study heterogeneity. MLMI could therefore further be improved by adopt-
ing restricted ML estimation [34, 35]. Unfortunately, alternatives for ML estimation of nonlinear mixed
effects models are still unavailable for many common software packages [33]. A third limitation of MLMI
arises when imputing continuous systematically missing predictors. Because the study-specific error vari-
ance 𝜎2

ik cannot be estimated for studies where predictor k is systematically missing, MLMI assumes a
common error variance term 𝜎2

k across all studies. This reduced flexibility of the covariance structure
may degrade the coverage properties of MLMI [36], as was observed in the simulation study. Although
the coverage rate of MLMI was always higher than TMI or SMI, and better than CCA in most scenar-
ios, achieved levels were sometimes around 90%. It may therefore be advantageous to further extend
MLMI and allow more flexibility in its covariance structure. The estimation of 𝜎2

ik could, for instance, be
facilitated by assuming a relationship with study-level characteristics. Further research is needed to inves-
tigate whether such approach would yield accurate estimates of 𝜎2

ik and decrease the amount of noise in
imputed datasets. Problems may also arise when imputing other types of systematically missing predic-
tors. For instance, models for imputing binary predictors with very low success probabilities may suffer
from sparse data biases [37–39] and degrade coverage rates. This problem was observed in the simula-
tion study, where systematically missing predictor x2 had a relatively low success probability (around
5–10%) and the coverage rate of �̂�2 substantially degraded. A fourth limitation of multilevel imputation
models is that their estimation requires substantial computational power. In our simulation study, MLMI
was about 100–150 times slower as compared with TMI. As a consequence, it may not always be fea-
sible to generate a large number of imputed datasets. Although five imputations should suffice in many
applications, it has previously been recommended to allow for 20–100 imputations [40]. This becomes
particularly relevant when there is a large fraction of missing information or when imputation models are
very complex. In order to facilitate the implementation of MLMI in real applications, it may be necessary
to allow for parallelization. This can be achieved fairly straightforward with MLMI, as imputed datasets
can be generated independently of one another. We applied this strategy in our empirical example, where
20 central processing units were used to simultaneously generate 20 imputations. A fifth limitation is that
we did not employ a full Gibbs sampler for drawing parameters in MLMI. Instead, we used large sample
approximations to the posterior distributions as these allow to substantially reduce the required compu-
tational time. A sixth limitation of MLMI is that an appropriate (ideally multivariate) distribution for the
random effects must be chosen. Although it is quite common and computationally efficient to adopt an
MVN distribution, this approach may not always be appropriate, particularly when random effects are
skewed. Finally, implementation of the described multilevel model is only justified under the MAR and
MCAR mechanisms. Further research is needed to develop imputation models that can be used when the
probability of systematic missingness depends on unmeasured variables (i.e., when predictors are missing
not at random).

5.4. Conclusions and recommendations

In conclusion, MLMI is a valuable addition to the current toolkit of approaches for dealing with missing
data particularly when multiple individual datasets are being used such as in IPD-MA. We recommend its
use when performing an IPD-MA with systematically missing predictors that are nonlinear and unlikely
to be MCAR, rather than excluding individual studies with unmeasured predictors or applying traditional
imputation methods that do not (fully) account for between-study heterogeneity. In situations when the
number of studies is limited, or computational power is low, MLMI may still be feasible if the number of
(joint) random effects is reduced. We tentatively suggest to generate 20–50 imputations and recommend
the implementation of penalized estimation strategies when imputation models need to be applied in
sparse data.
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Appendix A: Symbols used

Symbol Description Dimension

bik Vector of random effects in study i when imputing predictor k (imputation model) Q × 1
M Number of studies where xijk is fully observed
N Number of studies
Ni Number of subjects in study i
𝐓 Variance–covariance matrix of random effects parameters (complete data model) L × L
𝐮i Vector of random effects in study i (complete data model) L × 1
vij Vector of variables associated with 𝐮i (complete data model) L × 1
wijk Vector of variables associated with bik (imputation model) Q × 1
xij Vector of predictor values for subject j in study i K × 1
xijk Value for subject j in study i for predictor k
yij Outcome for subject j in study i
zijk Vector of covariates for imputing xijk (imputation model) P × 1
𝜷 Vector of fixed effects parameters (complete data model) K × 1
𝜸k Vector of fixed effects parameters when imputing predictor k (imputation model) P × 1
𝜽k Collection of unknown parameters of the imputation model when imputing

predictor k,with 𝜽k =
{
𝜸k,𝚵k

}
𝚲k Scale matrix parameter for generating samples of 𝚿∗−1

k when imputing predictor k Q × Q
𝚵k Matrix of (co)variance parameters in the imputation model when imputing

predictor k.
Imputation of binary predictor (𝚵k collapses to 𝚿k). Q × Q
Imputation of continuous predictor (Q + 1) × (Q + 1)

𝜎2
k Error variance when imputing continuous predictor k (imputation model)

𝚿k Variance–covariance matrix of random effects parameters when imputing
predictor k (imputation model) Q × Q

Appendix B: R code

All source code of the simulation studies is available as Supplementary Material. We provide the main
script of MLMI below.
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As an example, consider a dataset with a binary outcome y and two binary systematically missing
predictors x1 and x2. We denote the corresponding object as data. In the following example, data consist
of four columns (x1, x2, y, and study) and 5000 rows (one row per subject). We can generate 20 imputed
versions of data as follows:

Appendix C: Simulation setup

For each scenario, we generated 13 studies with N1 = N2 = … = N13 = 500 subjects. The binary
outcomes yij were calculated using the following statistical model:

logit{Pr(yij = 1)} = − 2.320748 + 1.111842 xij1 + 1.374697 xij2

+ ui0 + ui1xij1 + ui2xij2

𝐮i ∼ MVN
⎛⎜⎜⎝0,

⎡⎢⎢⎣
0.3282893 −0.19195017 −0.03652540
−0.1919502 0.15152094 0.03935728
−0.0365254 0.03935728 0.03472415

⎤⎥⎥⎦
⎞⎟⎟⎠
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For each study, the predictors xij1 and xij2 were simulated from a bivariate binary process with marginal
probability 𝜋i = (𝜋ij1, 𝜋ij2)T and Corr(xij1, xij2) = 𝜌i.

i 𝜋ij1 𝜋ij2 𝜌i

1 0.05252918 0.3025292 0.08223687
2 0.10565110 0.4336609 0.13471700
3 0.04575163 0.3856209 0.21211730
4 0.12756260 0.2425968 0.08226884
5 0.04804046 0.4083439 0.05391694
6 0.05116279 0.2818605 0.10789640
7 0.10955710 0.2237762 0.09817456
8 0.03692308 0.2861538 0.09264411
9 0.06254826 0.4293436 0.09163356
10 0.05963303 0.1513761 0.08280471
11 0.18299450 0.2994455 0.01414159
12 0.09090909 0.2072727 0.10354450
13 0.06798517 0.1891224 0.03258127

Appendix D: Required computation time

In the following are the absolute (abs., in seconds) and relative (rel.) computation times (averaged
over 100 replications) needed by the CPU for generating one imputated dataset in the simulation studies.
Results are based on a system with the following properties:

• Processor: Intel, Core i5-4670 CPU @ 3.40GHz
• RAM: 8 GB
• System type: 64-bit

Scenario N M Approach Time
abs. rel.

1 6 5 TMI 0.0264 1.00
SMI 0.0721 2.73
MLMI 4.4948 170.26

2 6 3 TMI 0.0243 1.00
SMI 0.0666 2.74
MLMI 3.1522 129.72

3 13 10 TMI 0.0537 1.00
SMI 0.2332 4.34
MLMI 7.7229 143.82

4 13 6 TMI 0.0451 1.00
SMI 0.2098 4.65
MLMI 5.3681 119.03

5 13 10 TMI 1.56 1.00
SMI 3.90 2.50
MLMI 139.39 89.35

6 13 6 TMI 1.00 1.00
SMI 2.46 2.46
MLMI 136.60 136.60

Times represent user times, that is, the CPU time charged for the execution of the corresponding R scripts.
TMI, traditional multiple imputation; SMI, stratified multiple imputation; MLMI, multilevel multiple
imputation.
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