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Article

Growth charts of human
development

Stef van Buuren1,2

Abstract

This article reviews and compares two types of growth charts for tracking human development over age.

Both charts assume the existence of a continuous latent variable, but relate to the observed data in

different ways. The D-score diagram summarizes developmental indicators into a single aggregate score

measuring global development. The relations between the indicators should be consistent with the Rasch

model. If true, the D-score is a measure with interval scale properties, and allows for the calculation

of meaningful differences both within and across age. The stage line diagram describes the natural

development of ordinal indicators. The method models the transition probabilities between successive

stages of the indicator as smoothly varying functions of age. The location of each stage is quantified by the

mid-P-value. Both types of diagrams assist in identifying early and delayed development, as well as finding

differences in tempo. The relevant techniques are illustrated to track global development during infancy

and early childhood (0–2 years) and Tanner pubertal stages (8–21 years). New reference values for both

applications are provided.

Keywords

Bayley scale, Tanner stages, references, D-score diagram, stage line diagram, age continuity, gain score

1 Introduction

Growth charts are widely being used to track growth in children. Conventional growth diagrams
portray the distribution of continuous measures (e.g. height, weight) against age. Growth charts aid
in detecting and monitoring growth-related diseases in children. Methods for fitting growth charts to
continuous measures have been well developed during the last two decades. The most popular
approach for fitting growth references is the LMS method,1 but many other models exist.2,3

Specialized diagnostic methods have been developed for evaluating model fit,4,5 many of which
have been implemented in GAMLSS.6

It has been long recognized that clinical practice should assess both growth and development.7

Whereas the appraisal of growth depends on continuous anthropometric quantities, evaluating
development during infancy, childhood and adolescence is more difficult because of the lack of
precise objective measures. Development is typically classified in phases and stages, e.g. phases of
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cognitive development,8 milestones (e.g. as in the Bayley Scales of Infant Development9), stages of
pubertal development,10,11 or stages of moral development.12

The quantitative methodology for stage measurements is less well developed than for quantitative
measures. In practice, one often relates the child’s score to a distribution from an age-specific norm
group. This can be done for separate indicators, as well as for aggregates. The comparison provides
an idea of the position of the child relative to the norm group at that age. Alternatively, one could
compare the current age of the child to the age at which 10% or 90% of the norm population
achieves the milestone. If the child’s age is below the 10th centile, it can be classified as early, whereas
children whose age is beyond the 90th centile are classified at late.

These approaches, however, do not yield quantitative measures of development that can be
compared across time. Unlike continuous anthropometry, it is not possible to calculate a
meaningful difference between two developmental scores obtained at different ages. Major
shortcomings of current methods are:

. Outcomes are relative to a specific population, the norm group,

. There is no common metric to compare outcomes. Difference scores are not meaningful because
there is no underlying quantitative scale,

. The exact meaning of the same score may differ across age; it is not possible to quantify a child’s
progress in time in terms of a gain in developmental units.

There is no equivalent to ‘height gained’ or ‘weight gained’ for developmental measures,
which complicates tracking individual development over time. This article presents and
discusses two novel growth charts that enable individual tracking of development both within
and across time.

2 Development as a continuous latent variable

2.1 Latent variable theory

Borrowing from the social sciences, we will distinguish between manifest and latent variables.
A manifest variable is a variable that can be measured directly. An example of a manifest
variable is an indicator to code whether or not the patient has a particular symptom. Another
example is observed blood pressure in mmHg. Latent variables, by contrast, cannot be observed
directly. The values on the latent variable are inferred through a mathematical model from manifest
variables. Examples of latent variables include the true (but unknown) disease status, and the true
(but unknown) blood pressure. Both manifest and latent variables can be of continuous or
categorical nature.

The new growth charts both assume the existence of a continuous latent variable on which the
‘true’ developmental score of a person can be placed. The person’s location on the latent variable
changes over time as development progresses. The person’s location is inferred from the person’s
measurements on the manifest variables. These measured variables can be observed scores on
developmental indicators, milestones, stages, and so on. The mathematical model allows us to
estimate the true but unobservable status on the latent continuum from the data. We use these
estimates to chart changes in developmental status over time. Thus, this study deals with the
situation where the measurements are categorical and where the latent variables are continuous,
or ‘dimension-like’.13 The methodology for connecting discrete measurements to a latent continuum
is known as latent trait analysis, or item response theory.
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2.2 Related work

One of the basic measurement assumptions of all latent variable models is longitudinal measurement
equivalence; that is, the same unidimensional attribute is measured on the same persons with the
same scale of measurement at every occasion.14 In practice, equivalence is hard to achieve. McArdle
et al. distinguished five general strategies to solve the problem of obtaining scale equivalence:

(1) Absolute scaling. Scales are constructed such that growth is linear in both the mean and the
standard deviations.15 Such linear assumption are often unrealistic, so this approach is almost
never used.

(2) Over time prediction. This approaches predicts later scores from earlier scores.16 Such prediction
models, however, do not attempt to construct a common scale, or do not directly estimate
change over time at the individual level.

(3) Within-occasion rescoring. All scores are standardized relative to an age-dependent norm.17 This
enables analyses of the relative positions, but does does not allow the estimation of change over
time, as there is no common unit that is invariant of time.

(4) SEM with convergent factor patterns. For multiple scales, the factor pattern is assumed to be
invariant over time formatted as a structural equations model (SEM). This allows us to estimate
changes in terms of a latent growth model of the second order.18 This approach requires
identification of the parameters, which may become problematic in real-life applications.

(5) IRT linkage of common items. The item response theory (IRT) approach postulates a single
factor model for different measures across age. Unless there is enough overlap over time, it will
not be possible to test the assumed measurement invariances. The IRT model is often estimated
simultaneously with the longitudinal model.19

The next sections describe two novel methods for measuring development on a common scale with a
unit that is invariant of time. The D-score method for infant development described in section 3 falls
into category 5. The method for pubertal method can be categorized into category 3.

3 Tracking development by the D-score

3.1 SMOCC Data

The Social Medical Survey of Children attending Child Health Clinics (SMOCC) project20 collected
data on 2151 infants born between April 1988 and October 1989. Data were obtained at nine
occasions between birth and 30 months of age. A total of 57 developmental indicators was
sampled. At each occasion, a doctor or a trained nurse assessed whether a child could perform a
set of developmental behaviors and tasks, and assigned a pass/fail score to each child for each
indicator. The difficulty of indicators is matched to the infant’s age so that approximately 90% of
the children will achieve a pass. A fail score is a signal of a potential delayed development, and a
reason for the youth health care physician to consider further investigation of the child. The set of 57
indicator is known as Van Wiechenschema, and forms an integral part of routine care in preventive
Child Health Care Centers in The Netherlands. For details on the interpretation of each indicator,
see the handbook by Laurent de Angulo.21

Each record in the data corresponds to a visit. Records without valid ages or with missing scores
on all developmental indicators were eliminated. The total number of available records was 16,538,
pertaining to 2038 infants. The total number of measurements made on the 57 indicators was equal
to 164,885. Table 1 is a breakdown of the number of indicators actually measured per occasion. The
table shows that per child usually 7 or 11–13 measurements were taken during the visit. A unique
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aspect of the design was that the more difficult set of indicator belonging to the next occasion was
also sampled. This allows linking of the indicators across time. The variation in the number of
measurements resulted from the design of the study, and was not related to the actual outcomes.

It is common practice to evaluate each indicator separately. Since 10% of the infants will fail on a
given indicator, and since there are on average six indicators per occasion, the number of infants
with at least one fail present could become quite large. A better and more reliable estimate
developmental delay can be attained by a composite score that combines the scores on multiple
indicators.

3.2 Model

The Rasch model22 assumes the existence of one continuous latent variable �. In the present
application we interpret � as global development. Suppose that the sample contains n children
that are observed at ages t> 0 (in days). The position of a child on the latent variable is denoted
by �t, a number indicating the child’s maturation at age t. If all is well, �t increases with t as the child
matures with age.

Let there be j¼ 1, . . . , m indicators. The jth indicator is characterized by a number �j on the same
latent variable. The parameter �j is the difficulty of the indicator, with higher values of �j being
associated with more difficult indicators. We assume that the difficulty �j is fixed and does not
depend on age.

The Rasch model stipulates that the probability of passing an indicator depends on only two
parameters: the child’s development status (�t) and the difficulty of the indicator (�j). More precisely,
suppose that Yjt is the score a child on indicator j at age t, where Yjt¼ 0 if the child fails and where
Yjt¼ 1 if the child passes. The Rasch model describes the probability that the child passes item j at
age t as

PðYjt ¼ 1j�t,�j Þ ¼
expð�t � �j Þ

1þ expð�t � �j Þ
ð1Þ

which corresponds to the logistic model based on the difference between �t and �j. If developmental
status equals the difficulty of the indicator, i.e. if �t¼�j, then P(Yjt¼ 1W�t, �j)¼ exp(0)/
(1þ exp(0))¼ 1/(1þ 1)¼ 0.5. If �t>�j then the probability of passing exceeds 0.5.

Table 1. Number of actual indicators measured per child per visit (IPV) on

57 developmental milestones. SMOCC data

IPV Frequency IPV Frequency

1 33 8 388

2 910 9 401

3 101 10 636

4 86 11 2305

5 613 12 2818

6 682 13 3970

7 2708 14 887
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For m¼ 2 there are four possible response vectors of (Y1t, Y2t): (0, 0), (0, 1), (1, 0) and (1, 1). The
Rasch model expresses the probability of observing each of these vectors simply as the product of
the separate indicator probabilities, i.e.

PðY1t \ Y2tj�t,�1,�2Þ ¼ PðY1tj�t,�1ÞPðY2tj�t,�2Þ: ð2Þ

The generalization to m> 2 will be obvious. Likewise, suppose that the child responds to indicator j
at ages t1 and t2. The probability of the four response vectors is then equal to

PðYjt1 \ Yjt2 j�t1 , �t2 ,�j Þ ¼ PðYjt1 j�t1 ,�j ÞPðYjt2 j�t2 ,�j Þ, ð3Þ

which illustrates that the Rasch model is able to predict response vector probabilities for any
combination of �t and �j.

An important and unique property of the Rasch model is the principle of invariant comparison.
Rasch summarized the principle of invariant comparison as follows (p. 332)23:

The comparison between two stimuli should be independent of which particular individuals were

instrumental for the comparison; and it should also be independent of which other stimuli within the
considered class were or might also have been compared.
Symmetrically, a comparison between two individuals should be independent of which particular stimuli

within the class considered were instrumental for the comparison; and it should also be independent of
which other individuals were also compared, on the same or some other occasion.

If the Rasch model holds, differences between �j and �j 0 with j 6¼ j 0 are identical no matter what
individuals we have in the sample. Vice versa, differences between �t and �t0 for t 6¼ t0 are identical no
matter which indicators we use for comparison. The principle of invariant comparison is an
extremely powerful concept that enables generalization of comparisons across different measures
and samples. Under the Rasch model, the intervals between indicators and individuals remain
invariant under addition and multiplication, so � is effectively an interval scale.

3.3 Estimation and model fit

Both �t and �j parameters are unknown and must be estimated from the data. We use the
RUMM2020 software to estimate both set of parameters from the SMOCC data. Estimates �̂t
and �̂j are calculated such that the total probability of obtaining the observed data under the
Rasch model is maximal. RUMM2020 implements the pairwise conditional method using
principal components.24

Observe that the data consist of multiple observations for each subject, so the data rows are
not independent. The model does not attempt to model the longitudinal character of the data,
and the fitting process treats all observations as independent. Jacobusse et al.25 observed that this
causes the standard errors to be too small by a factor of three relative to a sample size of 2151. In
addition, the rows dependency influences the reference distribution of the RUMM residuals (called
OUTFIT ZSTD in the Winsteps software for Rasch analysis), resulting in estimated RUMM
residuals that are too extreme. For more details on the data fitting process, see Jacobusse et al.25

3.4 External scale anchoring

The mean and the variance of the scale are arbitrary and must be set by user. In our previous work,
we standardized the scale to a sample mean of 50 and a sample standard deviation of 10.25,26
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This choice has been criticized as ‘meaningless’ because internal anchors are sample dependent and
cannot be reproduced by others by objective means.27 Since we find shifted �-estimates from a
sample with different ability,28 this criticism is justified. In this article, we will therefore use an
alternative approach based on external scale anchors. There are many instances in science where
external anchoring has proven useful. In 1742, Celcius fixed his temperature scale by setting two
anchors at easily determined and objective values, the freezing and boiling points of water at an air
pressure of 1 bar. The two anchors fixed his temperature unit and made it easily reproducible.

We have chosen to anchor the scale relative to two indicators. The lower anchor is ‘Lifts head to
45� in prone position’, which we equate to D¼ 20. Thus, at D¼ 20 the probability of passing this
item is 50%. The upper anchor is ‘Sits in stable position, without support’, which we equate to
D¼ 40. Specifying these two anchors fixes the location and the unit of the D-score scale. There are
several good arguments for these settings. The milestones associated with the lower and upper
anchors fitted the model well, they are widely used in different instruments, and they are easy to
measure. The lower and upper anchors are located at approximately one third and two third of the
scale for 0–2 years infants. The two indicators have very different difficulties so the estimates of the
measurement unit can well be made. Around the age of 1 month, D-scores will start approximately
at zero (though negative values may occur). In the present set of 57 indicators, every unit increase
corresponds to approximately passing one additional indicator. Since the scale has no end points, it
is straightforward to extend the scale to lower and upper D-scores that will appear outside the age
range 0–2 years.

Table 2 contains the estimated difficulty �̂j of the 57 indicators in the D-score scale. For binary
indicators, the difficulty level �̂j can be interpreted as the point on the scale where the probability of
passing indicator j is exactly 50%.

To wrap things up, there are now three different scales: the scale �RUMM constructed by RUMM
to calculate the estimates, the scale Dinternal with internals anchors of mean 50 and standard
deviation 10,25,26 and the scale Dexternal with two external anchors as defined above. These scales
can be transformed into each other in the following way:

Dinternal ¼ 49:273þ 1:1981 �RUMM

Dexternal ¼ 38:906þ 2:1044 �RUMM

Dexternal ¼ �47:63945þ 1:756448 Dinternal

The same transformation applies to item difficulties and ability estimates. The advice is to work in
the scale with external anchors, Dexternal.

3.5 D-score estimation

Estimates of person ability, �̂t, are called developmental scores, or D-scores. In general, the more
milestones the infant passes, the higher his or her D-score. Suppose that we measure the entire set
of 57 indicators for a given infant at day t. In that case, we can simply calculate the proportion
p of indicators that the child passes, transform the result onto the logit scale by logit(p)¼
log(p)� log(1� p), and apply a linear transformation to logit(p) to obtain �̂t ¼ Dt (p. 133)29.
In practice, however, we often have scores on a limited subset of indicators. For identical set of
indicators, we can use the above approach with linear transformations depending on the average
difficulty of the set. There should be at least 5 dichotomous items of appropriate difficulty for this to
work well. See Jacobusse and Van Buuren’s Table II for an example.26
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Table 2. Estimated item difficulties (�̂j) of 57 indicators sorted according to difficulty

Variable Item Label Difficulty

v1432 52 Moves arms equally well �2.2

v1434 53 Moves legs equally well �1.9

v1431 29 Reacts when spoken to 1.7

v1436 56 Lifts chin off table for a moment 5.2

v1430 1 Eyes fixate 5.4

v1437 30 Smiles in response 11.3

v1438 2 Follows with eyes and head 30�< 0> 30� 14.5

v1443 31 Vocalizes in response 14.5

v1444 54 Stays suspended when lifted under the armpits 15.8

v1440 3 Hands occasionally open 16.5

v1445 57 Lifts head to 45� in prone position (anchor) 20.0

v1442 4 Watches own hands 20.7

v1452 59 Flexes or stomps legs while being swung 25.7

v1449 55 No head lag if pulled to sitting 26.0

v1454 58 Looks around to side with angle face-table 90� 27.8

v1446 5 Plays with hands in midline 28.2

v1447 6 Supine position: grasps object within reach 29.9

v1450 Turns head to sound 31.1

v1460 61 Balances head well while sitting 32.5

v1457 9 Plays with both feet 33.2

v1459 60 Rolls over, back and forth 34.7

v1461 62 Sits on buttocks while legs stretched 34.9

v1455 7 Passes cube from hand to hand 36.0

v1462 33 Says ‘dada’, ‘baba’ or ‘gaga’ 36.0

v1456 8 Holds cube, grasps another one with other hand 36.5

v1463 63 Sits in stable position, without support (anchor) 40.0

v1469 34 Babbles while playing 40.9

v1464 10 Picks up pellet between thumb and index finger 43.1

v1466 64 Crawls forward, abdomen on the floor 43.1

v1468 36 Waves ‘bye-bye’ 43.1

v1467 65 Pulls up to standing position 44.3

v1475 35 Reacts to verbal request 45.7

v1470 11 Puts cube in cup on command 46.0

v1473 66 Crawls, abdomen off the floor 46.1

v1474 67 Walks along 46.1

v1472 12 Plays ‘give and take’ 46.5

v1514 14 Explores environment energetically 46.9

v1476 37 Says 2 ‘sound-words’ with comprehension 50.1

v1517 68 Walks alone, few steps 51.9

v1522 16 Imitates everyday activities 52.3

v1515 39 Says three ‘words’ 53.2

v1526 70 Picks up object from floor without falling 55.3

v1516 Identifies two named objects 55.4

v1527 Walks well 55.5

v1518 69 Throws ball without falling 56.0

v1512 13 Builds tower of two cubes 56.4

(continued)
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In many realistic settings the composition of the indicator sets differs between children. For
example, if a child fails a particular indicator, this indicator is added to the set to be measured
on the next occasion. Also, missing data may occur if the child ceases to cooperate. Since we cannot
compare sum scores based on different numbers of indicators, we need to resort to methods that
explicitly take the difficulty per indicator into account.

One popular method is conditional maximum likelihood (CML). The conditional likelihood for a
given data set can be maximized over �. The CML estimator is unbiased, efficient and has normally
distributed errors. However, CML may not work very well for a small number of items.29 The CML
estimator is incapable of providing estimates for perfect response profiles, and may give rise to local
minima for short scales.

Alternatives to the CML estimator include the maximum a posteriori (MAP) estimator and
expected a posteriori (EAP) estimator.29,30 The estimators can be used even for k¼ 1. Both
generally yield similar results, but the EAP is noniterative and faster. The EAP estimator works
as follows. Suppose that P(�j�1) denotes the probability density of the proficiency of the infant at age
t after seeing j� 1 scores. Let yj¼ 1 and yj¼ 0 denotes the infant’s pass and the fail scores. Then the
posterior density P(�j WYj¼ yj) after seeing j items can be calculated by Bayes’ theorem as

Pð�j jYj ¼ yj Þ ¼
PðYj ¼ 1j�j�1ÞPð�j�1Þ

PðYj ¼ 0j�j�1ÞPð�j�1Þ þ PðYj ¼ 1j�j�1ÞPð�j�1Þ
ð4Þ

This equation works for one indicator at a time. We apply it successively to all j¼ 1, . . . , k indicators
by setting the prior for P(�j�1) equal to the posterior P(�j WYj), and rerun the formula for j¼ jþ 1. The
sequence in which the indicators are entered is irrelevant to the end result. The EAP estimator
�̂j ¼ E½Pð�j jY1 ¼ y1, . . . , Yk ¼ ykÞ� is the mean of the posterior distribution after processing k
items. For charting application, we are generally not interested in intermediate �̂j for j< k, but
they are available. The integers between �10 and 80 are taken as the quadrature points for �.
The set of points easily cover the range of D implied by the anchors. A total of 91 quadrature
points is on the safe side.31 The procedure is repeated for all children and ages.

One thing remains to be specified, the starting prior P(�0). This choice is critical if the number of
indicators k is low, e.g. one or two. Usual uninformative global priors fail because these pull the

Table 2. Continued

Variable Item Label Difficulty

v1525 40 Understands ‘play’ orders 57.8

v1523 Drinks from cup 58.5

v1531 Eats with spoon without help 58.5

v1520 15 Builds tower of three cubes 59.2

v1524 41 Says ‘sentences’ of 2 words 60.2

v1529 18 Places round block 60.3

v1530 19 Takes off shoes and socks 60.6

v1532 43 Refers to self using ‘me’ or ‘I’ 61.7

v1533 44 Points at 5 pictures in the book 62.2

v1528 17 Builds tower of six cubes 62.6

v1534 71 Kicks ball away 64.2

Note: Items 1–28: Fine motor behavior and personal/social behavior; Items 29–51: Communication; Items 52–75 Gross motor

activity. Unnumbered items are not part of the 2005 classification of the items of the Van Wiechenschema.21
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D-scores too much towards to global mean for low k. After careful experimentation, we decided to
use the age-dependent normal prior N(�t, 5), where �t is the mean of the D-score distribution at
age t, and where the standard deviation of 5 is almost twice the within-day variation of the D-score.
Note that the use of an age-specific prior implies that identical scores at distinct ages are mapped
into (slightly) different D-scores. The discrepancies rapidly vanish as k grows.

3.6 Number of indicators per D-score

One potential worry in D-score estimation is that the D-score could be sensitive to the size of the
indicator set. In order to study this issue, we divided the records into 14 groups according to set size
(c.f. Table 1), and calculated the mean D-score per group after correcting for age and sex. This was
done for two outcomes: the Maximum Likelihood estimator and the EAP estimate with the age-
dependent prior.

Table 3 contains the parameter estimates of the two regressions. The proportion of explained
variance of both regression models is very high (0.97). The residual deviation �̂ around the
regression line is about 3 D-score units, which is small relative to the range of the D-score. Age
was entered as a third-order polynomial. The regression weights for different set size are expressed as
differences with respect to the last category (14 observations per occasion). Girls develop slightly

Table 3. Regression weights for predicting D-scores estimated by maximum likelihood (ML) and expected a

posterior (EAP) methods. The labels ‘1-14’ correspond to dummy variables of the number of indicators used to

estimate the D-score. SMOCC data (n¼ 2038)

ML EAP

Term Estimate Std. Error Estimate Std. Error

Intercept 39.42 0.15 38.96 0.16

Age(1) 2082.97 4.73 2094.22 4.85

Age(2) �566.80 4.43 �561.71 4.57

Age(3) 116.94 3.67 141.54 3.78

Sex 0.39 0.05 0.38 0.05

1 �0.27 0.56

2 �6.49 0.27 0.03 0.19

3 �4.89 0.70 1.10 0.35

4 �2.29 0.35 0.34 0.36

5 �4.12 0.19 �0.46 0.20

6 �2.43 0.18 �0.58 0.18

7 �2.43 0.18 �1.41 0.17

8 �0.55 0.20 0.81 0.21

9 �0.23 0.20 0.67 0.21

10 �0.09 0.18 0.64 0.18

11 0.09 0.15 0.66 0.15

12 �0.51 0.15 �0.09 0.15

13 0.06 0.14 0.31 0.15

14 (ref) 0 0 0 0

r2 0.97 0.97
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faster than boys. The difference is about 0.4 D-score units. Observe that the regression weights for
ML are relatively large in magnitude. For example, if there are only two indicators observed at a
specific time point, then the ML estimate is about 6.5 D-score points lower compared to a set size of
14. Since this difference is large (about 2 standard deviations in the D-score scale), the ML estimate
appears biased downward from set sizes smaller than seven indicators. Also observe that ML cannot
deal with set size of one. In contrast, the EAP estimator with the age-dependent prior is insensitive to
set size. This means that we can use the EAP to validly calculate �̂ from any number of indicators. Of
course, the results will be more accurate (i.e. less biased and more precise) if we use more indicators.

3.7 Reference values

We calculated age-conditional references of the D-score for all boys and girls combined by the LMS
method.1 The LMS method assumes that the outcome has a normal distribution after a Box–Cox
transformation. The reference distribution has three parameters, which model respectively the
location (�), the spread (�), and the skewness (�) of the distribution. Each of the three
parameters can vary smoothly with age. Let �t, �t and �t be the parameter values at age t. The
transformation

Z ¼
ðDt=�tÞ

�t � 1

�t�t
ð5Þ

converts measurement Dt into its normal equivalent deviate Z. If �t is close to zero, we use

Z ¼
lnðDt=�tÞ

�t
ð6Þ

The parameters are estimated by GAMLSS6 using cubic splines smoothers. We used the worm plot5

and Q-statistics4 to determine the optimal degrees of freedom of the smoothers. The final solution
used a log-transformed age scale and fitted the model with df(�)¼ 2, df(�)¼ 2, df(�)¼ 1. Table 4
gives the LMS estimates that define normal reference values of the D-score.

Any required centile curve can be derived from Table 4. First, choose Za as the Z-score below
which 100a percent of the distribution is located, for example, Z0.05¼�1.64. The D-score that
defines the 100a centile is equal to32

Dtð�Þ ¼ �tð1þ �t�tZ�Þ
1=�t ð7Þ

If �t is close to zero, we can use

Dtð�Þ ¼ �t expð�tZ�Þ ð8Þ

Figure 1 is the reference diagram of the D-score of Dutch infants. The gray area between the �2SD
and þ2SD lines delineates the D-score expected if development is normal. Note that the shape of the
reference is quite similar to that of weight and height, with rapid growth occurring in the first few
months. The Pearson correlation between age and D-score (0.944) is comparable to the that of age–
height (0.955) and age–weight (0.916). Thus, the D-score is extremely sensitive to detect and monitor
age-related changes. Figure 1 illustrates this by showing the D-score trajectory of two infants, one
with normal development and one with severely delayed development. Any measures and referral
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rules that have been developed for continuous measures33 can be applied to the D-score. This opens
up new possibilities for objectively identifying developmental delay.

This is the first time that age-conditional references have been created for development. There are
some open issues. Inclusion of the standard error would theoretically be appropriate. On the other
hand, it would complicate model fitting, and make application of the model in practice more
difficult. The added value of incorporating standard errors still needs to be studied. Note that the
references are purely cross-sectional. The correlation structure over time is not taken into account.
For prediction purposes, it is useful to extend the modeling to include velocities and change scores,
but this has not yet been done. Use of the Box–Cox transformation is the de facto standard in the
construction of growth references for anthropometric data. It could be that other, perhaps more
flexible distributions are needed to account for the typical features (e.g. severe skewness, ceiling
effect) found in developmental data.

3.8 Related work

The D-score is an attempt to solve the problem of changing scales of measurement. The term
‘D-score’ has been used previously for a similar purpose by Bayley.17

The D-score as proposed here uses a two-stage estimation procedure. The Rasch model is
fitted first, followed by a calculation of change scores. Many applications in the social sciences

Table 4. Reference distribution for D-scores, boys and girls combined. The table lists age-dependent values of the

median �, the coefficient of variation �, and the skewness parameter � of LMS reference distribution of D-scores

Week � � � Week � � �

2 8.81 0.3126 1.3917 48 47.16 0.0647 1.4778

3 10.59 0.2801 1.4418 52 48.84 0.0627 1.4676

4 12.27 0.2526 1.4891 56 50.41 0.0608 1.4605

5 13.87 0.2291 1.5331 60 51.89 0.0591 1.4561

6 15.39 0.2089 1.5722 64 53.27 0.0574 1.4538

7 16.83 0.1916 1.6049 68 54.58 0.0559 1.4533

8 18.20 0.1767 1.6304 72 55.81 0.0544 1.4539

9 19.50 0.1640 1.6487 76 56.97 0.0530 1.4555

10 20.75 0.1531 1.6607 80 58.06 0.0517 1.4580

12 23.07 0.1354 1.6706 84 59.11 0.0505 1.4612

14 25.21 0.1220 1.6698 88 60.11 0.0494 1.4649

16 27.17 0.1117 1.6636 92 61.06 0.0483 1.4692

18 28.99 0.1035 1.6533 96 61.97 0.0474 1.4740

20 30.70 0.0970 1.6403 100 62.85 0.0465 1.4791

22 32.29 0.0917 1.6255 104 63.70 0.0457 1.4846

24 33.79 0.0873 1.6100 108 64.52 0.0449 1.4904

26 35.21 0.0837 1.5946 112 65.31 0.0441 1.4964

28 36.55 0.0807 1.5797 116 66.08 0.0434 1.5024

32 39.04 0.0759 1.5523 120 66.82 0.0428 1.5084

36 41.32 0.0723 1.5284 124 67.54 0.0421 1.5142

40 43.42 0.0693 1.5081 128 68.24 0.0415 1.5199

44 45.36 0.0669 1.4913 132 68.92 0.0410 1.5254
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rely on simultaneous estimation. McArdle et al.14 considered two-stage estimation ‘less optimal
owing to the longitudinal dependencies within person’ (p. 142). They acknowledge, however, that
two-stage estimation substantially cuts down on the computational complexity and simplifies
modeling.

To this, let us add another argument in favor or two-stage estimation. The two stages address
conceptually very distinct problems. The first problem is to construct the measurement scale, which
is done by fitting the Rasch model. The second problem is to estimate change over time on that
measurement scale, which is done by calculating differences or by performing ANOVA. Solving
both estimation problems simultaneously is undesirable since it confounds both problems. In the
simultaneous procedure, the scale itself depends on the observed changes in the calibration sample.
Unless the crossover between both stages is small, the scale produced by simultaneously estimation
cannot be used across different samples. Moreover, the amount of change estimated from the

Figure 1. D-score reference chart, 0–30 months, with SD curves �2SD, �1SD, 0SD (median), þ1SD and þ2SD.

Two child trajectories are superposed. The infant with the blue curve has a normal development around �1SD.

Maturation of the infant with the red curve is severely delayed from the age of 12 months onwards.
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calibration sample is larger than the amount of change under two-stage estimation. The reason is
that the simultaneous fitting process will emphasize features in the measurements that will bring out
the estimated change most clearly. In sequential estimation, the amount of change plays no role
in the way in which the scale is constructed, and hence the resulting change estimate will be equal
or smaller. So both for simplicity and conceptually, we advocate two-stage estimation over
simultaneous estimation.

The two-stage analysis is simple to do and yields generalizable results through the properties of
the Rasch model. The model is now being accepted for modeling developmental data. Applications
in human development have been published by Dawson,34 Jacobusse et al.,25,26 Draney,35 and Boom
et al.36,37 Presenting human development as a growth diagram is natural and may enhance the
understanding of the developmental phenomena under study.

The Rasch model is a very strict model and may not fit the data. Extensions such as the 2PL
model and 3PL models29 could be used instead, at the expense of losing the attractive invariance
properties of the Rasch model. For applications in measuring cognitive development, it interesting
alternative is the so-called Saltus model.38 The Saltus model is an extension of the Rasch model that
allows modeling leaps in development. The model can capture discontinuities as predicted by the
theories of cognitive development of Gagné, van Hiele and Siegler by assuming that indicator
difficulties vary between groups.

4 Tracking stages of development

4.1 Pubertal stages

Puberty is an important phase of life that connects childhood to adolescence. The timing and speed
of pubertal maturation varies between individuals. A widely accepted measurement of pubertal
maturation are the so-called Tanner stages.10,11 This system classifies secondary sexual
characteristics into a number of distinct stages. For boys, there are three types of measures:
genital development (5 stages G1–G5), pubic hair (5 stages PH1–PH5), and testis size (12 stages
T1–T25 corresponding to volumes of 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25mL). For girls, the Tanner
system measures includes: breast development (5 stages B1–B5), pubic hair (6 stages PH1–PH5) and
menarche (2 stages no/yes). Pubertal stages were determined by visual inspection, using Tanner’s
criteria according to the high-resolution photographs.39 In boys testicular volume was assessed using
the Prader orchidometer.

We use cross-sectional data collected within the Fourth Dutch Growth Study.40 The original
data were collected using an additional category for pubic hair (PH6). In the sequel, we combine
stage PH6 with PH5 in order to conform to the original scoring system. The study contained data on
5436 children (2377 boys, 3059 girls) aged between 7 and 22 years that had one or more Tanner stages
observed. This is a subset of a larger sample of approximately 50%, with more nonresponse occurring
in the higher age groups. In this article we present the estimates always conditional on age, so this
skewed age distribution will not affect the results.41,42 The composition of the puberty sample was
comparable with the sample of a national survey with regard to region and level of education.

4.2 Age continuity

The usual estimates of interest for pubertal development include

(1) the age at which some part of the population (e.g. 50%) reaches a stage,39,40,43

(2) the mean age at which a stage is reached,10
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(3) the mean age of all children that are in a particular stage,43

(4) the mean duration of being in a particular stage.10

Note that these statistics all have age as their outcome and are conditional on stage. Estimation
and interpretation of references with age as outcome is generally difficult as it requires us to take
any censoring and selective drop out processes into account. In practice, such problems can easily
occur since nonresponse can strongly depend on age.41,42 Fortunately, we can estimate statistics of
type 1 and 2 by solving the reverse problem. It is straightforward to determine the probability of
reaching a stage at a given age, for example by probit or logistic regression. Given the estimated
probability curve, we can find the ages at which 10%, 50% and 90% of the population reaches
the stage. It is also possible to calculate the mean age at which the stage is reached. Age-
conditional references are widely accepted for continuous measures like height and weight. In
the sequel, we will concentrate on deriving truly age-conditional references of pubertal
development.

We assume that pubertal development is a continuous process, even though the observations are
always discrete. This induces a form of continuity that we call age-continuity. Suppose that two
children, one young and one old, are in the same developmental stage. We can say that, on average,
the younger child matures earlier than the older child. To see why this is the case, consider the fact
that the younger child still has the opportunity to move into the next stage before his/her age reaches
that of the older child, whereas the older child does not have this opportunity anymore. Thus,
depending on age, the same stage is associated with different degrees of maturation. Moreover,
the difference in maturation grows with the age gap.

In the previous section we aggregated different indicators of infant development into an
overall summary, the D-score. Can we do the same for the three pubertal measures? The
answer is ‘no’ for two reasons. First, the three items fail to fit the polytomous Rasch model as
developed by Andrich.44 In particular, the model does not cope well with the different numbers of
categories (5, 5 and 2 for girls; 5, 5 and 12 for boys). For example, in the model a change in menarche
status weights as much as a change from B3 to B4. In practice a change in menarche is considered
much more important. A solution for this would be to calculate the model separately for
the observation with and without menarche (Andrich, personal communication, 2004). Second,
each of the measures is of clinical interest in its own right. Marshall and Tanner (p. 301)10 state:
‘It is important to recognize that the relation between the different events of puberty is a more
significant index of normality than the chronological age at which they occur.’ It is known that some
diseases have disparate effect on different events. For these reasons, we model each measure
separately.

4.3 Reference values

Let Y be an ordered stochastic variable whose values Y2 {1, . . . , m} correspond to stages 1 to m, and
let X represent decimal age. The probability of achieving stage c at age X is written as P(Y� c WX)
where c¼ 2, . . . , m. Let P(Y< c WX)¼ 1�P(Y� c WX). For each transition from stage c� 1 to c, we
model a reference curve conditional on X by an generalized additive model.45 Let �(Z) be the
cumulative distribution function of the normal distribution N(0, 1), and let its inverse ��1(P) be
the probit transformation. We assume that we can model the probability of being in stage c or higher
as a function of age as

probitðPðY � cjXÞÞ ¼ �c þ fcðXÞ, c ¼ 2, . . . ,m ð9Þ
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Table 5. Age-conditional reference curves for pubertal development in boys. The table lists the probability*10,000

of achieving a stage at a given age between 8 and 21 years

Genitalia Pubic hair Testicular volume (mL)

Age G2 G3 G4 G5 PH2 PH3 PH4 PH5 T2 T3 T4 T5 T6 T8 T10 T12 T15 T20 T25

8.00 1152 112 0 0 324 0 0 0 7152 3103 719 322 276 183 175 8 0 0 0

8.25 1317 128 0 0 418 1 0 0 7467 3336 838 369 310 211 192 12 0 0 0

8.50 1494 147 0 0 532 2 0 0 7763 3565 971 422 348 243 212 17 0 0 0

8.75 1681 167 0 0 669 3 0 0 8039 3784 1117 480 389 278 232 24 0 0 0

9.00 1875 190 0 0 831 7 0 0 8293 3988 1277 545 434 318 255 34 0 0 0

9.25 2079 216 0 0 1021 13 0 0 8524 4176 1449 620 485 362 279 47 0 0 0

9.50 2306 246 0 0 1240 24 0 0 8734 4370 1641 713 545 412 305 65 1 0 0

9.75 2565 284 1 0 1488 42 0 0 8922 4599 1878 840 620 471 338 88 2 1 0

10.00 2853 333 2 0 1774 73 0 0 9089 4907 2190 1015 715 544 378 118 4 2 0

10.25 3163 399 4 0 2102 120 1 1 9236 5295 2577 1246 837 633 430 157 8 3 0

10.50 3487 489 8 0 2475 188 3 2 9364 5744 3011 1528 993 745 499 208 17 6 0

10.75 3824 612 17 0 2890 286 6 5 9475 6237 3480 1863 1200 890 590 277 33 10 0

11.00 4198 779 33 0 3350 425 15 9 9570 6770 4000 2272 1482 1085 714 370 63 18 1

11.25 4643 1009 64 1 3861 624 34 16 9650 7318 4601 2798 1869 1350 886 498 114 31 2

11.50 5200 1324 119 4 4438 911 74 28 9718 7856 5318 3490 2392 1709 1123 671 197 51 4

11.75 5887 1744 214 9 5090 1321 153 48 9774 8352 6122 4325 3057 2181 1442 903 322 82 8

12.00 6645 2286 371 21 5801 1887 305 84 9821 8769 6903 5197 3833 2766 1853 1206 501 128 14

12.25 7400 2947 616 45 6533 2618 574 142 9859 9092 7578 6025 4665 3456 2359 1588 745 196 25

12.50 8076 3714 972 93 7241 3485 997 237 9890 9335 8134 6788 5493 4225 2955 2053 1059 292 43

12.75 8624 4552 1451 179 7874 4417 1584 386 9915 9515 8568 7461 6273 5032 3620 2592 1448 426 71

13.00 9045 5411 2050 323 8406 5340 2314 605 9935 9646 8899 8036 6987 5838 4326 3191 1908 610 114

13.25 9355 6240 2755 540 8833 6197 3150 908 9950 9742 9160 8521 7627 6612 5043 3839 2430 855 175

13.50 9576 6997 3545 842 9163 6963 4052 1300 9962 9814 9381 8938 8187 7328 5752 4523 3000 1164 257

13.75 9727 7654 4386 1232 9410 7629 4972 1774 9972 9868 9571 9291 8660 7963 6437 5218 3597 1535 365

14.00 9826 8196 5232 1703 9588 8188 5871 2321 9979 9909 9724 9563 9036 8489 7078 5905 4211 1963 498

14.25 9890 8631 6041 2247 9712 8637 6715 2934 9985 9940 9835 9750 9318 8900 7663 6568 4836 2438 655

14.50 9929 8973 6774 2853 9796 8988 7475 3606 9989 9962 9908 9868 9525 9207 8184 7190 5467 2953 834

14.75 9954 9239 7415 3500 9853 9259 8127 4326 9992 9977 9952 9935 9673 9432 8629 7753 6099 3498 1038

15.00 9970 9443 7961 4170 9892 9466 8649 5076 9994 9986 9976 9970 9778 9593 8992 8234 6711 4052 1267

15.25 9980 9595 8416 4835 9920 9621 9038 5817 9996 9992 9989 9987 9850 9707 9271 8623 7272 4590 1519

15.50 9987 9707 8784 5461 9939 9734 9314 6505 9997 9996 9995 9995 9898 9788 9477 8923 7755 5085 1785

15.75 9992 9789 9074 6009 9954 9814 9508 7101 9998 9998 9998 9998 9930 9846 9626 9146 8147 5520 2053

16.00 9995 9848 9294 6461 9964 9871 9644 7590 9999 9999 9999 9999 9951 9889 9730 9309 8456 5887 2312

16.25 9997 9890 9458 6815 9972 9911 9737 7978 � � � � 9965 9919 9802 9427 8693 6182 2551

16.50 9998 9919 9578 7082 9978 9938 9801 8285 � � � � 9975 9941 9852 9511 8865 6409 2758

16.75 9999 9940 9664 7284 9983 9958 9846 8533 � � � � 9981 9958 9888 9570 8983 6573 2932

17.00 9999 9955 9728 7446 9986 9971 9879 8742 � � � � 9986 9969 9913 9611 9059 6689 3076

17.25 � 9965 9777 7585 9989 9981 9907 8922 � � � � 9990 9978 9931 9641 9105 6766 3194

17.50 � 9973 9814 7721 9992 9988 9931 9085 � � � � 9993 9985 9945 9663 9134 6820 3297

17.75 � 9978 9845 7872 9994 9992 9950 9230 � � � � 9995 9989 9956 9682 9155 6863 3397

18.00 � 9982 9869 8039 9995 9995 9965 9354 � � � � 9996 9993 9964 9699 9172 6910 3500

18.25 � 9985 9888 8216 9997 9997 9976 9458 � � � � 9997 9995 9971 9715 9189 6964 3603

18.50 � 9988 9904 8393 9998 9998 9984 9545 � � � � 9998 9997 9976 9733 9207 7024 3696

18.75 � 9990 9916 8566 9999 9999 9990 9617 � � � � 9999 9998 9980 9752 9226 7095 3786

19.00 � 9992 9927 8729 9999 9999 9993 9677 � � � � 9999 9999 9984 9772 9244 7179 3892

19.25 � 9993 9935 8881 � � 9996 9726 � � � � 9999 9999 9987 9792 9263 7275 4023

(continued)
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where fc(X) is a smooth univariate function of age. The calculations were done by the gam package
in R. We applied smoothing splines to find the shape fc(X), and used analysis of deviance by
anova.gam() to find the optimal degrees of freedom of the smoothing spline. In most cases, this
resulted in the default smoothing parameter as calculated by the gam() function.

Tables 5 and 6 contain the fitted reference curves for successive stage transitions of puberty. One
can determine the ages at which 10%, 50% and 90% of the reference population achieve a stage by
linear interpolation. For example, for the transition B1-B2 we find 8.98, 10.72 and 12.17 years,
respectively. Note: Due to recent advances in fitting methodology and software, slight differences
may occur with the previously tabulated values (here 9.01, 10.72 and 12.16 years).40

4.4 Maturation scores

Tables 5 and 6 contain a complete summary of the reference distribution, but they are unsuitable to
track individual development over time. The problem is that the measurements are stages, but that
the reference values apply to stage transitions. For example, if we observe stage B3 at age t, we only
know that the transition from B2 to B3 must have occurred at or before age t. We do not know when
the transition occurred. The only exception to this is perhaps menarche, a clear event for which we
sometimes do have an exact calendar date. Specialized methods for handling this case have been
developed.46 For the other measures, we are always unsure about the timing of transition.
Consequently, the reference values as presented in Tables 5 and 6 are of limited value to monitor
development.

The stage line diagram47 remedies this problem. The essential idea is to convert the m� 1
transition probabilities into m maturity scores, one per stage. The probability of observing stage c
at age X is equal to the distance between two curves, i.e.

PðY ¼ cþ 1 jXÞ ¼ PðY5 cþ 1Þ � PðY5 c jXÞ, c ¼ 1, . . . ,m ð10Þ

where P(Y< 1 WX)� 0 and P(Y<mþ 1 WX)� 1, so that
Pm

c PðY ¼ c jXÞ ¼ 1 for all X. The maturity
score pc WX corresponding to stage c at age X is defined as

�c jX ¼ PðY5 c jXÞ þ PðY ¼ c jXÞ=2 ð11Þ

¼
PðY5 c jXÞ þ PðY5 cþ 1 jXÞ

2
ð12Þ

Table 5. Continued

Genitalia Pubic hair Testicular volume (mL)

Age G2 G3 G4 G5 PH2 PH3 PH4 PH5 T2 T3 T4 T5 T6 T8 T10 T12 T15 T20 T25

19.50 � 9994 9943 9019 � � 9997 9766 � � � � � 9999 9990 9812 9283 7383 4177

19.75 � 9995 9950 9146 � � 9998 9800 � � � � � � 9992 9832 9304 7504 4351

20.00 � 9996 9956 9261 � � 9999 9828 � � � � � � 9993 9850 9326 7635 4541

20.25 � 9997 9961 9365 � � 9999 9854 � � � � � � 9995 9866 9348 7771 4727

20.50 � 9998 9966 9458 � � � 9876 � � � � � � 9996 9881 9370 7905 4903

20.75 � 9998 9970 9539 � � � 9895 � � � � � � 9997 9895 9391 8034 5075

21.00 � 9998 9974 9611 � � � 9911 � � � � � � 9998 9907 9411 8160 5246

*denotes a value of 10,000.
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Table 6. Age-conditional reference curves for pubertal development in girls. The table lists the probability*10,000 of

achieving a stage at a given age between 8 and 21 years

Breast Pubic hair Menarche

Age B2 B3 B4 B5 PH2 PH3 PH4 PH5 Yes

8.00 213 4 0 0 175 1 0 0 46

8.25 328 7 0 0 251 2 0 0 53

8.50 491 15 0 0 354 4 1 0 62

8.75 719 29 0 0 493 9 2 0 71

9.00 1027 54 1 0 682 21 4 0 83

9.25 1424 97 2 0 934 44 9 1 95

9.50 1886 164 5 1 1250 88 17 2 110

9.75 2392 265 12 2 1628 166 33 5 129

10.00 2947 416 27 4 2082 298 61 10 155

10.25 3575 641 59 9 2644 510 109 20 190

10.50 4299 969 120 19 3335 834 190 38 239

10.75 5115 1419 231 37 4129 1299 320 70 310

11.00 5972 1998 415 69 4955 1914 523 124 414

11.25 6789 2705 698 124 5757 2666 823 211 567

11.50 7525 3514 1096 211 6529 3531 1247 348 787

11.75 8169 4409 1616 343 7270 4471 1820 552 1100

12.00 8711 5383 2256 531 7967 5442 2544 839 1528

12.25 9133 6385 3005 786 8569 6386 3386 1221 2085

12.50 9434 7318 3832 1114 9038 7247 4295 1701 2766

12.75 9635 8118 4695 1514 9371 7987 5211 2269 3547

13.00 9763 8749 5555 1988 9592 8580 6080 2907 4390

13.25 9843 9199 6375 2525 9734 9024 6865 3585 5245

13.50 9893 9499 7120 3106 9823 9340 7550 4265 6068

13.75 9924 9689 7762 3701 9880 9557 8122 4910 6821

14.00 9944 9806 8284 4273 9917 9704 8583 5493 7480

14.25 9957 9878 8686 4791 9940 9800 8941 6001 8033

14.50 9967 9922 8985 5244 9956 9864 9214 6437 8484

14.75 9973 9949 9205 5640 9967 9904 9420 6811 8843

15.00 9978 9966 9364 5985 9975 9931 9571 7136 9125

15.25 9982 9977 9481 6285 9981 9948 9680 7422 9343

15.50 9985 9984 9569 6547 9985 9959 9759 7676 9508

15.75 9989 9989 9638 6782 9988 9967 9815 7902 9630

16.00 9993 9993 9693 6995 9991 9972 9856 8100 9721

16.25 9995 9995 9739 7185 9993 9976 9884 8273 9786

16.50 9997 9997 9777 7355 9995 9978 9904 8425 9834

16.75 9998 9998 9807 7510 9996 9980 9918 8555 9869

17.00 9999 9999 9832 7653 9997 9981 9928 8666 9894

17.25 9999 9999 9851 7786 9998 9982 9935 8759 9913

17.50 � � 9867 7910 9999 9982 9940 8838 9926

17.75 � � 9880 8033 9999 9982 9943 8908 9936

18.00 � � 9891 8161 9999 9982 9946 8973 9944

18.25 � � 9901 8298 9999 9982 9948 9034 9950

(continued)
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¼ 1�
PðY � c jXÞ þ PðY � cþ 1 jXÞ

2
ð13Þ

for c¼ 1, . . . , m.
Figure 2 illustrates the calculation of pc WX. The diagram plots the probability P(Y< 2 WX) and

P(Y< 3 WX) taken from Table 6 against age as two lines. The distance between the lines is equal to
the absolute probability of observation stage 2 at age X. The most obvious place for defining a
maturity score for stage 2 is exactly half way this distance. If this is done for all ages and points are
connected, then we obtain the Y-coordinate of the stage line p2 WX. The same calculation applies to
other stages.

The statistic pc WX is known as the mid-P-value, and was proposed as a correction for continuity in
statistical tests. Using the mid-P-value to quantify categorical data seems to be novel. To see that the
mid-P-value is a reasonable value for stage c imagine that the observable stage Y¼ c is a coarse
version of a continuous latent variable ~Y that has a uniform distribution ~Y � U½0, 1�. The link
between ~Y and the observed data Y is

Y ¼ c if PðY5 c jXÞ � ~Y5PðY5 cþ 1 jXÞ c ¼ 1, . . . ,m ð14Þ

The distribution ~Y � U½0, 1� will be reasonable if the model adequately fits the reference data, which
can be evaluated through worm plots or Q-statistics.4,5 The interval [P(Y< c WX), P(Y< cþ 1 WX)] is
also uniformly distributed, so the mid-P-value pc WX is the best single summary measure.

As before in section 3.7, it is possible to calculate Z-scores for the observed data. Suppose we
observe Y¼ c at age X¼ t. First, linearly interpolate P(Y� c WX¼ t) and P(Y� cþ 1 WX¼ t) from the
surrounding tabulated ages t1 and t2 by P(Y� c WX¼ t)¼ hP(Y� c WX¼ t1)þ (1� h)P(Y� c WX¼ t2)
where h¼ (t2� t)/(t2� t1). The Z-score is calculated as

Z ¼ ��1 1�
PðY � c jXÞ þ PðY � cþ 1 jXÞ

2

� �
ð15Þ

Table 6. Continued

Breast Pubic hair Menarche

Age B2 B3 B4 B5 PH2 PH3 PH4 PH5 Yes

18.50 � � 9910 8444 � 9982 9950 9096 9955

18.75 � � 9919 8599 � 9982 9952 9159 9959

19.00 � � 9928 8759 � 9983 9955 9226 9963

19.25 � � 9936 8918 � 9983 9957 9295 9966

19.50 � � 9944 9071 � 9984 9960 9365 9968

19.75 � � 9951 9213 � 9984 9963 9435 9971

20.00 � � 9958 9340 � 9985 9965 9501 9973

20.25 � � 9963 9451 � 9985 9968 9562 9976

20.50 � � 9968 9547 � 9986 9970 9617 9978

20.75 � � 9973 9629 � 9986 9972 9667 9980

21.00 � � 9977 9699 � 9987 9974 9711 9982

*denotes a value of 10,000.
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The Z-score allows us to draw a diagram that relates the concept of early/late maturation to the
proportion of children in the reference sample that achieves some stage. In the reference population,
the mean of the Z-scores is equal to zero. The standard deviation is smaller than 1, due to rounding,
floor and ceiling effects.47

4.5 Stage line diagram

Figure 3 contains the stage line diagrams of genital development as calculated from Table 5. The
horizontal axis represents age between 8 and 21 years. The vertical axis indicates maturation status.
The scale of this uses the probit scale, so the values can be interpreted as Z-scores. The Z-score is
useful for tracking development because it provides high resolution at the extremes, the areas of
most clinical significance. Lower values indicate delayed development, and higher values signal early
maturation. The diagram contains five stage lines. Each stage line corresponds to one of a
developmental stage.

The user places a mark on the stage line corresponding to the observed stage at the child’s age,
and connects the mark to the previous measurement. A move to the next stage produces a jump in
the curve. The exact age at which the child reaches the next stage is unknown, and can be anywhere
between the two ages surrounding the jump. Steeper jumps occur for measurements that are closer in
time. Jumps can span two or more stages.

Figure 2. Calculation of stage lines positions from the reference curves by the mid-P-value. The mid-P-value is

calculated for all ages and all stages.
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The stage line diagram generalizes the format proposed by Sorva48 to discrete data. Normal
growth is shown as a horizontal line and any deviation from this indicates abnormal change in
growth. Observations within the middle region, say between �2 SD and þ2 SD lines, signal normal
development. Early maturing children are placed near the top of the diagram, while children with
developmental delay appear near the bottom. Regions signifying 10%, 5% and 1% extreme children
are marked at both sides for easy reference. These regions can be used to set action levels and
monitor treatment. The slope of the curve starting from the last B1-mark is a measure of
developmental tempo in SDS/year.

We can read off the age interval [P10, P90] for a stage from the diagram as follows. First find the
age at which the stage line crosses the 90% late region, i.e. P90(B1)¼ 12.17 years. Next, select the
next higher stage line, and find the age at which the stage line crosses the 10% early region. For
example, we find that P10(B2)¼ 8.98. Thus, the [P10, P90] interval for stage B1 is [8.98, 12.17]. These
values can be used conventionally for classifying children into ‘early’, ‘normal’, ‘late’. Note that for
stage lines, tail probabilities are doubled so Z¼�1.64 matches the 10th percentile (and not the 5th).

In addition, we can compare maturation across different ages. Since all diagrams use the same
Y-axis, we can plot multiple scores on the same diagram. This will visualize differences in status and
tempo of different aspects of pubertal development within the same individual. Figure 4 shows
pubertal development of a boy. Genital and testicular development are normal, but pubic hair is
clearly ahead between ages 10 and 13 years. Since testicular volume has many stages (12), the
resulting curves are generally less erratic. Note that how graph indicates that testicular volume
was not measured at all occasions. This boy also had measurements before the age of 8 years.
This is indicated by the line extending left from the first visible measurement. If desired, other
measures (e.g. height SDS, BMI SDS) can be added.

Figure 3. Stage line diagram for genital development in Tanner stages G1–G5.
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4.6 Related work

Wade et al.49 pioneered the construction of reference standard from ordinal data. Applications
include visual acuity during childhood50 and the recognition of emotions.51 Royston extended the
family of models to include multiple covariates and more liberal forms of dependencies between the
outcome and the covariates.52 The method is designed to model outcome variables with peculiar
distributions (e.g. many zeroes) that are difficult to model in the conventional way.

Potential fields of applications of the stage line diagram include: dentistry (tooth eruption),
oncology (tumor grading, cancer staging), virology (HIV infection and disease staging),
psychology (stages of cognitive development), human development (pubertal stages) and chronic
diseases (stages of dementia). The web site that implements the stage line diagram is located at
http://vps.stefvanbuuren.nl/puberty. Readers interested in calculating maturation scores on their
own data can do this via this web site.

5 Conclusion

Age-conditional growth charts aid in tracking development over time. The problem of creating
reference diagrams for developmental data has not received proper attention in the past. This
article presents and discusses two novel types of growth diagrams. The D-score diagram
summarizes the information collected on multiple indicators into a single summary measure, the
D-score. It is possible to calculate reference values and draw reference diagrams by well-tested
techniques for continuous data. The stage line diagram preserves the discrete nature of the
observed data, and estimates one parameter per stage that varies with age. Both allow us to spot
abnormal development and to gauge differences in tempo for individuals.

Figure 4. Stage line diagram for Tanner scores for genital, pubic hair and testis development combined.
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Both diagrams assume the existence of a continuous latent variable on which the ‘true’
developmental score of a person can be placed. The person’s location on the latent variable
changes over time as development progresses. The primary difficulty is to construct
appropriate models that translate the observed data into a location of the latent continuum.
Latent variable models differ in the way in which they connect the latent variables to the data.
The primary vehicle of the D-score diagram is the Rasch model. The EAP estimator turns out to be a
good way of calculating D-scores for infant development. The stage line diagram assumes a latent
variable model that represents the hypothetical ‘true’ developmental score prior to discretization by
the measurement process. This is similar to the models considered by Scott Long.53

As a by-product, we obtain quantified versions of the discrete data. These maturation scores are
interesting in their own right, and often much easier to analyze that the original measurements. For
example, it is straightforward to calculate the Pearson correlation between breast development and
pubic hair development (it is equal to 0.59). Alternatively, we can use maturation as a predictor in a
risk model to predict developmental delay. In one of our recent applications, theD-score at the age of
2 years was found to be a highly discriminatory predictor for developmental disability at the age of 5–
10 years.54We expect that creative researchers will find novel ways to put these newmeasures to work.

Acknowledgements

The studies were performed in cooperation with the Well Baby Clinics and Municipal Health Services. I thank

the participating schools and universities, the Koninklijke Landmacht, and the Evangelische Omroep. Pieter

Herngreen, Thea Reerink and Miranda Fredriks put great efforts into the collection of the data. I thank Elise

Dusseldorp and two anonymous reviewers for their suggestions for improvement.

Funding

The author(s) received no financial support for the research and/or authorship of this article.

References

1. Cole TJ and Green PJ. Smoothing reference centile curves:
the LMS method and penalized likelihood. Stat Med 1992;
11(10): 1305–1319.

2. Borghi E, de Onis M, Garza C, et al. Construction of the
World Health Organization child growth standards:
selection of methods for attained growth curves. Stat Med
2006; 25(2): 247–265. (Available at: http://www.
stefvanbuuren.nl/publications/Construction%20WHO%
20-%20Stat%20Med%202006.pdf).

3. Van Buuren S. Growth references. In: Kelnar C, Savage M,
Saenger P and Cowell C (eds) Growth disorders, 2nd ed.
London: Hodder Arnold, 2007, pp.165–181.

4. Royston P and Wright EM. Goodness-of-fit statistics for
age-specific reference intervals. Stat Med 2000; 19:
2943–2962.

5. Van Buuren S and Fredriks AM. Worm plot: a simple
diagnostic device for modelling growth reference curves.
Stat Med 2001; 20(8): 1259–1277.

6. Stasinopoulos DM and Rigby RA. Generalized additive
models for location scale and shape (GAMLSS) in R. J Stat
Softw 2007; 23(7): 1–46. (Available at: http://
www.jstatsoft.org/v23/i07).

7. Tanner JM and Whitehouse RH. Growth and development
reference charts (Tanner-Whitehouse Standards). Hertford,
UK: Castlemead Publications, 1984.

8. Inhelder B and Piaget J. The growth of logical thinking
from childhood to adolescence. New York: Basic Books,
1958.

9. Bayley N. Bayley scales of infant development, 2nd ed. San
Antonio, TX: Psychological Corp, 1993.

10. Marshall WA and Tanner JM. Variations in pattern
of pubertal changes in girls. Arch Dis Child 1969; 44:
291–303.

11. Marshall WA and Tanner JM. Variations in pattern of
pubertal changes in boys. Arch Dis Child 1970; 45: 13–23.

12. Kohlberg L. The psychology of moral development: the
nature and validity of moral stages. Vol 2, San Francisco:
Harpen & Row, 1984.

13. De Boeck P, Wilson M and Scott Acton G. A conceptual
and psychometric framework for distinguishing categories
and dimensions. Psychol Rev 2005; 112(1): 129–158.

14. McArdle JJ, Grimm KJ, Hamagami F, et al. Modeling
life-span growth curves of cognition using longitudinal
data with multiple samples and changing scales of
measurement. Psychol Meth 2009; 14(2): 126–149.

15. Thurstone LL. The absolute zero in intelligence
measurement. Psychol Rev 1928; 35: 175–197.

16. Jones MC, Bayley N, McFarlane JW, et al. The course of
human development. Selected Papers from the Longitudinal
Studies. Institute of Human Development, the University
of California, Berkeley. Waltham, MA: Xerox, 1971.

van Buuren 367

 at University Library Utrecht on September 29, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


17. Bayley N. Individual patterns of development. Child
Develop 1956; 27: 45–74.

18. Sayer AG and Cumsille PE. Second-order latent growth
models. In: Collins LM and Sayer AG (eds) New methods
for the analysis of change. Washington DC: American
Psychological Association, 2001, pp.179–200.

19. Fischer GH and Parzer P. An extention of the rating scale
model with an application to the measurement of change.
Psychometrika 1991; 56: 637–651.

20. Herngreen WP, Reerink JD, van Noord-Zaadstra BM,
et al. The SMOCC-study: design of a representative cohort
of live-born infants in the Netherlands. Eur J Public Health
1992; 2: 117–122.

21. Laurent de Angulo MS. Ontwikkelingsonderzoek in de
Jeugdgezondheidszorg. Assen: Van Gorcum, 2008.

22. Rasch G. Probabilistic models for some intelligence and
attainment tests. Copenhagen: Danish Institute for
Educational Research, 1960.

23. Rasch G. On general laws and the meaning of
measurement in psychology. In: Proceedings of the fourth
Berkeley symposium on mathematical statistics and
probability, IV. Berkeley: University of California Press,
1961, pp.321–334.

24. Andrich D and Luo G. Conditional pairwise estimation in
the Rasch model for ordered response categories using
principal components. J Appl Meas 2003; 4(3): 205–221.

25. Jacobusse G, Van Buuren S and Verkerk PH. An interval
scale for development of children aged 0-2 years. Stat Med
2006; 25(13): 2272–2283.

26. Jacobusse G and Van Buuren S. Computerized adaptive
testing for measuring development of young children. Stat
Med 2007; 26(13): 2629–2638.

27. Cheung YB, Gladstone M, Maleta K, et al. Comparison of
four statistical approaches to score child development: a
study of Malawian children. Tropical Med Int Health 2008;
8: 987–993.

28. Vale CD. Linking item parameters onto a common scale.
Appl Psychol Meas 1986; 10: 333–344.

29. Embretsen SE and Reise SP. Item response theory for
psychologists. Mahwah, NJ: Lawrence Erlbaum, 2000.

30. Bock DD and Mislevy RJ. Adaptive EAP estimation of
ability in a microcomputer environment. Appl Psychol
Meas 1982; 6(4): 431–444.

31. Chen SK, Hou L and Dodd BG. A comparison of
maximum likelihood estimation and expected a posteriori
estimation in CAT using the partial credit model. Educ
Psychol Meas 1998; 58(4): 569–595.

32. Cole TJ, Freeman JV and Preece MA. British 1990 growth
reference centiles for weight, height, body mass index and
head circumference fitted by mximum penalized
likelihood. Stat Med 1998; 17: 407–429.

33. van Dommelen P and van Buuren S. Evidence-based
referral criteria in growth monitoring. Stat Meth Med Res
2012; (to appear).

34. Dawson TL. New tools, new insights: Kohlberg’s moral
judgement stages revisited. Int J Behav Develop 2002;
26(2): 154–166.

35. Draney K. The saltus model applied to proportional
reasoning data. J Appl Meas 2007; 8(4): 438–455.

36. Boom J, Wouters H and Keller M. A cross-cultural
validation of stage development: a Rasch re-analysis of

longitudinal socio-moral reasoning data. Cognit Develop
2007; 22: 213–229.

37. Boom J. Measuring moral development: stages as markers
along a latent developmental dimension. In: Koops W,
Brugman D, Ferguson TW and Sanders AF (eds) The
development and structure of conscience. London:
Psychology Press, 2010, pp.151–167.

38. Wilson M. Saltus: A psychometric model of discontinuity
in cognitive development. Psychol Bull 1989; 105(2):
276–289.

39. van Wieringen JC, Wafelbakker F, Verbrugge HP, et al.
Growth diagrams 1965 Netherlands. Leiden: Nederlands
Instituut Praeventieve Geneeskunde, 1971.

40. Fredriks AM, van Buuren S, Burgmeijer RJF, et al.
Continuing positive secular growth change in The
Netherlands 1955-1997. Pediatr Res 2000; 47(3): 316–323.

41. Mul D, Fredriks AM, van Buuren S, et al. Pubertal
development in the Netherlands 1965-1997. Pediatr Res
2001; 50(4): 479–486.

42. van Buuren S. Multiple imputation of discrete and
continuous data by fully conditional specification. Stat
Meth Med Res 2007; 16(3): 219–242. (Available at: http://
www.stefvanbuuren.nl/publications/
MI%20by%20FCS%20-%20SMMR%202007.pdf).

43. Sun SS, Schubert MS, Chumlea WC, et al. National
estimates of the timing of sexual maturation and racial
differences among US children. Pediatrics 2002; 110:
911–919.

44. Andrich D. A rating formulation for ordered response
categories. Psychometrika 1978; 43: 561–573.

45. Hastie TJ and Tibshirani RJ. Generalized additive models.
Vol 1, London: Chapman and Hall, 1990.

46. Atwood CL and Taube A. Estimating mean time to reach
a milestone, using retrospective data. Biometrics 1976;
32(1): 159–172.

47. van Buuren S and Ooms JCL. Stage line diagram: an age-
conditional reference diagram for tracking development.
Stat Med 2009; 28(11): 1569–1579.

48. Sorva R, Perheentupa J and Tolppanen EM. A novel
format for growth chart. Acta Paediatrica 1984; 73(4):
527–529.

49. Wade AM, Ades AE, Salt AT, et al. Age-related standards
for ordinal data: modelling the changes in visual acuity
from 2 to 9 years of age. Stat Med 1995; 14(3): 257–266.

50. Wade AM, Salt AT, Proffitt RV, et al. Likelihood-based
modelling of age-related normal ranges for ordinal
measurements: changes in visual acuity through early
childhood. Stat Med 2004; 23(23): 3623–3640.

51. Wade AM, Lawrence K, Mandy W, et al. Charting the
development of emotion recognition from 6 years of age.
J Appl Stat 2006; 33(3): 297–315.

52. Royston P. A parametric model for ordinal response data,
with application to estiming age-specific reference
intervals. Biostatistics 2000; 1(3): 263–277.

53. Scott Long J. Regression models for categorical and limited
dependent variables. Thousand Oaks: Sage, 1997.

54. Boere-Boonekamp MM, Dusseldorp E, Hafkamp-de
Groen E, et al. Screening for developmental disability is
possible 2011; (submitted for publication).

368 Statistical Methods in Medical Research 23(4)

 at University Library Utrecht on September 29, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/

