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Introduction
In a longitudinal study, each subject or unit is measured at several 

time points, thereby allowing the direct study of change over time. In 
many biomedical applications, the longitudinal response is binary, 
or in general non-Gaussian, for instance, the presence or absence 
of illness in an intervention study for a period of seven weeks. The 
generalized linear mixed model is a widely used approach with binary 
longitudinal responses [1,2]. In many practical settings with moderate 
to large length, however, these models imply complex and hard to 
manipulate likelihoods, for example, in the presence of missing data. 
An alternative modeling approach is generalized estimating equations 
[3]. This method essentially allows confining attention to the mean 
structure provided that one is willing to adopt working' assumptions 
about the association structure.

When data are incomplete, GEE suffers from its frequentist nature 
and is only valid under the restrictive missing completely at random 
(MCAR) assumption, where the missingness is independent of both 
unobserved and observed data [4]. For this reason, Robins et al. [5] 
have developed a class of GEE methods, the so-called weighted GEE 
(WGEE), that allows for the weaker missing at random (MAR) 
assumption, where the missingness is independent of the unobserved 
data given the observed data [4,6]. WGEE methods use the inverse 
of the subject's probability of being observed as a weight contributed 
in the estimating equation to reduce possible bias in the regression 
parameter estimates.

More recently, WGEE methods have been extended to the so-
called doubly robust (DR) estimating equations, where the weighting 
idea is integrated with the use of a predictive model for the missing data 
given the observed data. The DR methods provide consistent estimates 
of the parameters given correct specification of either the weights or 
the predictive model, but not necessarily both. Excellent reviews can be 
found in Bang and Robins [7] and Rotnitzky [8].

The idea of doubly protection (or doubly robustness) is 
advantageous because it provides the analyst two routes to valid 
inferences, rather than just one. Nevertheless, the DR methods can be 
unstable in practice when both models are misspecified [9], or they 
can be disastrous when the propensity scores (i.e., the probabilities of 

being observed) are close to zero [9,10]. Moreover, these methods lack 
generalization to intermittent missing data, where the subjects return 
to the study after skipping one or more visits.

A viable alternative approach is multiple imputation [11,12]. 
Standard MI requires MAR to hold, even though extensions exist. 
Missing values are imputed several times, and then the resulting 
completed data sets are analyzed using a standard method like GEE. 
Beunckens et al. [13], among others, combined MI and GEE such that 
the missing data are multiply imputed, and then inferences are obtained 
by GEE, and combined into a single summary using Rubin's pooling 
rules (MI-GEE). However, this method, like the other imputation 
approaches, needs correct specification of the imputation model.

Jolani et al. [14] combined DR ideas with MI and constructed an 
imputation model with a doubly protected property, the so-called dual 
imputation method (DIM). This method makes use of the weighting 
idea within the imputation model. More specifically, a function of the 
propensity scores (e.g., the inverse of the propensity score) is included 
into the imputation model with the aim of increasing robustness of 
imputations against misspecification of the imputation model. Also, 
DIM can handle the problem of intermittent as well as monotone (or 
dropout) incomplete longitudinal data.

Until now, DIM has only been tried for continuous data. In this 
paper, we extend the methodology to binary data. Our focus is thus 
on the combination of DIM and GEE (DIM-GEE) for incomplete 
longitudinal binary data when the pattern of missing data is general. 
This involves multiply imputing binary responses by means of DIM 
and then applying GEE to the completed data sets. DIM-GEE is a 
new imputation method that makes it possible to model incomplete 
longitudinal binary data under the MAR assumption.
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Abstract
Estimation in binary longitudinal data by using generalized estimating equation (GEE) becomes complicated in the 

presence of missing data because standard GEEs are only valid under the restrictive missing completely at random 
assumption. Weighted GEE has therefore been proposed to allow the validity of GEE's under the weaker missing at 
random assumption. Multiple imputation offers an attractive alternative, by which the incomplete data are pre-processed, 
and afterwards the standard GEE can be applied to the imputed data. Nevertheless, the imputation methodology 
requires correct specification of the imputation model. Dual imputation method provides a new way to increase the 
robustness of imputations with respect to model misspecification. The method involves integrating the so-called doubly 
robust ideas into the imputation model. Focusing on incomplete binary longitudinal data, we combine DIM and GEE 
(DIM-GEE) and study the relative performance of the new method in a case study of obesity among children, as well as 
a simulation study.
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This paper is organized as follows. In GEE for binary longitudinal 
data, an overview of GEE for analyzing longitudinal binary data 
is given. MI is briefly outlined in multiple imputation. The new 
imputation method is presented in dual imputation based GEE. In 
case study, DIM-GEE is used to analyze a case study of obesity among 
children and to compare with MI-GEE. A simulation study comparing 
DIM-GEE with MI-GEE was conducted and results are presented in 
simulation study.

GEE for Binary Longitudinal Data
Suppose the random variable Yij denotes a sequence of binary 

measurements at time j, j = 1,…,N for subject i, i = 1,…,n. The observed 
value yij is a realization of the binary response variable Yij, and we 
assume independence across subjects. The focus of this study is on the 
marginal models that describe the binary outcome vector, given a set 
of predictor variables. The association structure (correlation among 
the components) is captured by an assumed model. Let πij denote the 
marginal probability of observing a ‘success' for subject i at time j, i.e., 
πij = E(Yij) = P(Yij = 1),
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The joint probability mass function is thus the product of individual 
mass functions and the correlation factor c(yi). The later can be viewed 
as a model for overdispersion.

The use of full likelihood-based methods for the above marginal 
model can be unattractive due to prohibitive computational 
requirements. Therefore, alternative methods such as GEE have been 
proposed. GEE is very useful in marginal models because by adopting 
working assumptions about the association structure, one only needs 
correctly specifying the univariate marginal distributions.

For a binary response Yij, suppose xij is a p-dimensional vector 
of complete covariates. Assuming the logit link function, the mean 
structure of the binary model can be expressed as

{ } 'logit ( 1 | x , ) x ,ij ij ijP Y β β= =

where β is the vector of model parameters. The classical GEE can thus 
take the form
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where 1/2 1/2( ),i i i i i iE V A C A= =Yπ  is the covariance matrix of Yi, Ai is a 

diagonal matrix with the marginal variances, and Ci is the marginal 
correlation matrix for the repeated measures. The correlation matrix 
Ci is typically expressed in terms of a vector of nuisance parameters 
that needs to be replaced by a consistent estimate, e.g., a moment-
based estimator [3]. Given a correct specified marginal mean πi, it 
can be shown, under mild regularity conditions, the estimate of β̂  
is asymptotically normal with mean vector β and covariance matrix 
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When the working correlation structure is misspecified there is no 

price to pay in terms of consistency of the asymptotic normality of β̂ . 
However, this misspecification may result in loss of efficiency. Because 
GEE is not a likelihood based approach, it suffers from its frequentist 
nature in the presence of missing data. Therefore, GEE is only valid 
under MCAR.

Multiple Imputation
The idea of multiple imputation is to replace each missing value 

with a set of M plausible values drawn from the conditional distribution 
of the missing values given the observed data. M imputed data sets are 
then analyzed using standard methods. The final step is to combine the 
results into a single summary using Rubin's rule [11]. 

A popular approach to create imputed datasets is multiple 
imputation by chained equations [16-18]. The basic idea is to specify 
a set of imputation models, one model for each variable with missing 
values, and then impute data on a variable-by-variable basis. We 
briefly outline the MICE algorithm for the case of binary longitudinal 
responses. Suppose, for each subject i, the vector of measurements 
Yi=(Yi1,…,YiN) has missing values in an arbitrary pattern. We drop i 
for notation convenience. All missing values are initially filled in at 
random. The first incomplete measurement, say Y1, is regressed (here 
a logistic regression) on the other measurements Y2,…,YN and possibly 
covariates x restricted to subjects with observed Y1. Missing values in 
Y1 are then imputed using the posterior predictive distribution of Y1 
given Y2,…,YN and x. The missing values in the second incomplete 
measurement, say Y2, are then imputed by measurements Y1, Y3,…,YN 
and x. The process is repeated for all other measurements with missing 
values in turn. The cycle is repeated for several times (say 10 or 20) 
to produce a single imputed dataset. The whole procedure is repeated 
M times from different seeds, thus producing M completed data sets. 
The resulting completed data sets are finally used to estimate β using 
standard methods.

Dual Imputation Based GEE
In this section we show how to impute the missing measurements 

in binary longitudinal data using DIM methodology, when the 
missingness mechanism is MAR. The key idea is to incorporate a 
function of the propensity scores into the imputation model [14]. The 
aim of including this function (the inverse of the propensity scores) into 
the model is to reduce the effect of a possible misspecified imputation 
model.

Suppose Yij can be observed or missing. Let Rij denote a binary 
response indictor for subject i at time j; that is, Rij=1 if Yij is observed 
and Rij=0 otherwise. For each subject i, rij is a realisation of Rij. Suppose 
the probability of being observed (i.e., the propensity score) for subject 
i at time j follows the logistic model
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{ } 'logit ( 1 | , ) , 1,..., N,= = =ij ij j ij jP R jw wα α                    (2)

where wij is a q-dimensional vector of covariates associated with the 
unknown parameters αj, typically including the other outcomes yis(s ≠ 
j) and covariates xij. We further allow that the missingness can happen 
in an arbitrary pattern (e.g., an intermittent pattern).

We first consider an unrealistic but pedagogical case where all 
propensity scores τij = P(Rij = 1|wij,αj) are assumed to be known. Then, 
inclusion of 1

ijτ
−  in the imputation model is a sufficient condition to 

obtain a DR estimator of β [19]. In what follows it is convenient to 
define vij = (xij,yi(-j))’, where yi(-j) includes all outcome variables excluding 
yij.

Therefore, for each incomplete variable Yij, the dual imputation 
model fits the following model restricted to its observed part

{ }1 ' 1logit ( 1 | , , , )τ γ δ γ τ δ− −= = +ij ij ij j j ij j ij jP Y v v                    (3)

where γj is a vector of parameters in the imputation model 
corresponding to vij, and δj is a regression coefficient for the new 
predictor 1

ijτ
− . A random draw ( )* *,j jγ δ is generated from its posterior 

distribution, and then the missing values of the jth incomplete variable 
are imputed using the drawn values of the parameters. After all 
incomplete variables are imputed in turn, and the cycle is repeated 
for an adequate number, a completed data set will be produced. Each 
completed data set then is analyzed using the conventional GEE, and 
the results are pooled by Rubin's rule into a single inference.

The propensity scores often are unknown so need to be estimated. 
Estimation, however, is not straightforward when the pattern of 
missing data is intermittent. Because estimation of the propensity 
scores in a particular time depends on the other time points that might 
be incomplete. For the continuous case, Jolani et al. [14] have developed 
an extension of MICE algorithm that successively estimates the 
propensity scores and imputes the missing values for each incomplete 
variable.

Here we outline the algorithm in detail. Initially, all missing values 
are filled in at random. Suppressing i form the notation, for each 
incomplete variable Yj , j=1,…,N, the propensity score model 2 is used 
to draw a random value of αj and to estimate the propensity score 1

j
−τ  

based on the drawn value. The imputation model 3 then generates 
imputations for the missing part of Yj. Cycling through all the models, 
posterior draws of the parameters are made given current values of the 
other variables. More specifically, steps of the DIM are:

1. Impute initially missing data by taking a random draw from the 
observed data.

2. Repeatedly, for j = 1,…,N

(a) Estimate αj in the propensity score model 2, and draw a random 
value jα from its posterior distribution.

(b) Calculate the propensity score ˆ jτ  given the drawn value jα .

(c) Add 1ˆ j
−τ  into the imputation model 3 as an additional predictor.

(d) Estimate the parameters (γj,δj) in the imputation model 3 only 
from its observed part.

(e) Draw a random value ( ),j jγ δ

 
from their posterior distributions.

(f) Impute impute the missing values in the jth incomplete variable 
using the drawn values in the previous step

3. Return to step 2 to repeat the algorithm a small number of times, 
say 10 or 20.

The algorithm is a possibly incompatible Gibbs sampler. Although 
there is no guarantee for the existence of the joint distribution from 
which the values are drawn, experience has shown that it often leads to 
valid statistical inferences in a variety of cases Van Buuren et al. [16]; 
Gelman and Raghunathan [20]; Van Buuren [21]; Lee and Carlin [22]; 
White et al. [23].

Case Study
The data used in this paper were obtained from the Muscatine 

Coronary Risk Factor study [24], a longitudinal survey of school- age 
children in Muscatine, Iowa. The aim of the study was to examine 
the development and persistence of risk factors for coronary disease 
in children. In total, 4856 children (boys and girls) were followed 
biennially from 1977 to 1981, resulting in 3 measurements per child. 
The outcome of interest was the status of obesity, coded as 0 (non-
obese) or 1 (obese), which was obtained on the basis of a comparison of 
their weight to age-gender specific norms. One objective was whether 
the risk of obesity increases with age and whether patterns of change in 
obesity are the same for boys and girls.

Due to many reasons, the child's obesity status could not be 
measured on all scheduled time points. Fewer than 40% of the children 
provided complete data at all three measurements. The patterns of 
missingness were displayed in Table 1 along with their corresponding 
frequency and percent of missing data for boys and girls separately. We 
see that the occurrence of missingness is similar in both groups.

The rate of children classified as obese at each of the three 
measurement occasions is also depicted in Figure 1. These percentages 
were calculated based on the complete case analysis at each occasion 
for both boys and girls. The graph indicates that the rates of obesity 
were increased for boys over time. For girls, the rates of obesity were 
increased first, but declined thereafter. The graph also shows that the 
rates of obesity were higher for girls at all occasions.

The marginal probability of obesity is modeled as a logistic function 
with time, sex and their interaction as covariates:

{ } 0 1 2 3logit ( 1 time sex time sex ,ij ij i ij iP Y β β β β= = + + ×+

where Yij=1 if the ith child at the jth occasion is classified as obese, and 
Yij=0 otherwise; sexi=1 if the ith child is girl, and sexi=0 if the ith child is 
boy; timeij=j, j=1, 2, 3, represents time at each occasion; β=(β0, β1, β2, 
β3)’ is a vector of parameters 'in which we are interested.

Missing values pose a problem in this study, and, unfortunately, an 
intermittent pattern of missingness makes the analysis of the data even 
more complicated. Standard GEE may produce biased results because 

Year Boys Girls
1977 1979 1981 Frequency Percent Frequency Percent

O O O 897 36% 873 37%
O O M 318 13% 313 13%
O M O 88 4% 96 4%
O M M 389 16% 367 15%
M O O 317 12% 328 14%
M O M 196 8% 174 7%
M M O 281 11% 219 10%

Note: `O' denotes observed measurement, `M' denotes missing measurement.
Table 1: Muscatine Coronary Risk Factor data: Frequency and percent of children 
per missing data pattern for boys and girls separately.
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Figure 1: The rates of obesity among children in Muscatine Coronary Risk 
Factor study during 1977-1981 for boys and girls separately.

rate of obesity was. Nevertheless, the estimated time effect by standard 
GEE where complete cases were used only was more than twice as large 
as those of the imputation methods (0.097 versus 0.042 and 0.039) 
showing a possible overestimation of this effect in standard GEE.

An interaction between time and sex was not significant. This 
implies that although the rate of obesity was increased with age, this 
increment did not statistically differ among boys and girls.

Apart from standard GEE, the parameter estimates were very 
similar based on MI-GEE and DIM-GEE. However, standard errors 
in DIM-GEE were marginally lower than MI-GEE. Thus, while the 
substantive conclusion did not differ, imputation using DIM-GEE 
provided the most efficient estimates. To further investigate the relative 
merits of both imputation methods, we conducted a limited simulation 
study aiming at a comparison between DIM-GEE and MI-GEE in the 
next section.

Simulation Study
This section reports the results of a simulation study comparing 

DIM-GEE and MI-GEE. We consider a situation where the imputation 
model for both methods is correctly specified. For DIM-GEE, we 
also consider a correct propensity score model. Simulation studies 
comparing misspecified models (in a slightly different setting with 
continuous outcomes) were reported in Jolani et al. [14]. Since 
complete case analysis is known to be biased, we concentrated on the 
comparison between DIM-GEE and MI-GEE.

For the simulation study, we generated data by mimicking the 
obesity case study. A total of n = 4856 subjects was initially divided 
into two groups of equal size representing their sex. Then, the binary 
outcome at three time points was generated based on the Bahadur 
model formulation 1 with

{ } 0 1 2 3logit ( 1 time sex time sex ,ij ij i ij iP Y β β β β= = + + ×+

where (β0, β1, β2, β3)=(-1.4, 0.2, -0.2, 0.4), and two-and three-
way correlation coefficients equal to 

1 2
0.45ij jρ =

 
and 1 2 3

0,ij j jρ =
respectively. The latter defines an exchangeable correlation structure. 
The outcome Yij represents the obesity status (1 coded as obese) for 
subject i, i=1,…,n, at time j, j = 1,2,3; timeij=j represents time at each 
occasion; and sexi = 1 if the subject is a girl and zero otherwise.

We assumed the missing data process is MAR and adopted the 
general methodology proposed by Van Buuren et al. [18] for creating 
intermittent missing data under MAR. Similar to the obesity data, we 
specified six missing data patterns (Table 1). Then, the missing data 
were created such that they formed an approximation of the missing 
data percentages presented in Table 1. We created missing values in 
each pattern conditional on the observed data. For instance, the missing 
data in pattern {OOM} were conditioned on Y1,Y2. A full description of 
this procedure can be found in Van Buuren et al. [18].

The incomplete data sets afterwards were multiply imputed and 
analyzed by DIM-GEE and MI-GEE methods respectively. For MI-
GEE, the imputation model included sex and obesity status at other time 
points as covariates. For DIM-GEE, we first obtained the propensity 
scores by fitting the logistic model 2, and then included the inverse of 
the propensities as an additional covariate into the imputation model. 
The number of imputations was set to 10 with 1,000 Monte Carlo 
simulations. All calculations were done in R 3.0.2 using MICE [25].

Several measures were computed to investigate the performance of 
both methods. First, we defined the relative bias (RB)

it is very hard to verify an MCAR assumption. Moreover, complete case 
analysis is wasteful due to a large fraction of missing data. WGEE cannot 
also be per- formed because of an intermittent pattern of missingness. 
Performing an imputation strategy is therefore a reasonable solution to 
estimate the parameters of interest.

We applied our proposed method (DIM-GEE) as follows. First, a 
propensity score (i.e., the probability of being observed) was estimated 
from model 2 for every child at each occasion. Background variables 
sex and age (mid-point of age group) were considered as covariates 
in the propensity score model. Second, we included sex, time and 
their interaction into the imputation model plus the inverse of the 
propensity scores. The latter variable aims at correcting for possible 
biases in the imputation model. We created 20 multiply imputed data 
sets. Each imputed data set was then analyzed using standard GEE. The 
final results were pooled to obtain a single inference.

Table 2 shows results based on three approaches: Standard GEE, 
MI- GEE, and DIM-GEE. Standard GEE uses the complete case only. 
MI-GEE multiply imputes the missing values using the standard MI 
procedure and then performs GEE for each imputed data set. For this 
the number of imputations was also 20.

In line with research questions, the effect of time was significant in 
all methods indicating that the risk of obesity was increased with age. 
This implies that the older the age of the children was, the higher the 

Method Intercept TIME SEX TIME X SEX
Est. Std.err Est. Std.err Est. Std.err Est. Std.err

GEE -1.551 0.083 0.097 0.034 0.153 0.114 -0.002 0.047
MI-GEE -1.822 0.15 0.042 0.012 0.164 0.209 -0.008 0.016

DIM-GEE -1.835 0.138 0.039 0.011 0.127 0.197 -0.003 0.015

Note: GEE is standard generalised estimating equation, MI-GEE is standard 
multiple imputation based GEE, and DIM-GEE is dual imputation based GEE. Est. 
is the parameter estimate, and Std.err is the standard error.
Table 2: Parameter estimates and standard errors from the Muscatine Coronary 
Risk Factor study for GEE, MI-GEE, and DIM-GEE methods.
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ˆ
,RB β β

β
−

=

where β is the true parameter value and β̂  is its estimate averaged over 
all simulations. Further, we calculated the root mean squared error 
(RMSE) of the parameter estimate

( ) ( )
1/22

ˆ ˆVar ,RMSE β β β
 

= − + 
 

where ( ) 2

1
ˆ ˆ ˆVar ( ) / ( 1),

S
ss

Sβ β β
=

= − −∑
 

and S is the number of 
simulations.

Moreover, a 95% confidence interval width (CIW), as well as 
the coverage of a 95% confidence interval (COV) were computed. 
The results for the parameter estimates based on these methods are 
presented in Table 3.

The relative bias was negligible for both methods showing 
asymptotically unbiased parameter estimates. However, the RMSE 
based on DIM-GEE was marginally smaller than that of MI-GEE, 
pointing a greater efficiency of the estimators by the former method. 
In addition, the confidence interval width was always shorter for DIM-
GEE, and the empirical coverage rates were very close to the nominal 
level. In contrast, the 95% coverage rates of MI-GEE were lower. In 
sum, although both methods were performed equally well in terms of 
bias, the newly developed method provided more efficient parameter 
estimates.

Concluding Remarks
We have presented a version of generalized estimating equations 

for in-complete binary longitudinal data under MAR. This extension 
is based on the principals of multiple imputation, inverse probability 
weighting and its doubly robustness counterpart, and GEE. Our 
particular attention was on the extension of dual imputation method 
[14] to incomplete binary measurements. The proposed method 
facilitates computational intricacy ofWGEEs in complex patterns of 
missing data, and is easy to implement in existing software.

In view of previous work on the comparison between WGEE and 
MI, Clayton et al. [26] and Beunckens et al. [13], among others, provided 
evidence on preference of MI over WGEE in longitudinal binary data. 
The simulation studies by Beunckens et al. [13] provided insight 
about the efficiency of MI based GEE, the so-called MI-GEE, over 
WGEE particularly in small samples. Nevertheless, misspecification 
of imputation model can- not be disregarded in practice, and biased 
results can be expected when the imputation model is incorrect [23,27].

For incomplete binary longitudinal data, the new imputation 
method (DIM-GEE) was particularly designed to increase the 
robustness of imputations. By adopting the doubly robust property 

into the imputation model, one might expect improvement under 
doubly protected imputation methods.

In this paper, we have compared versions of generalized estimating 
equations in a real life example with missing data, as well as a simulation 
study. The results revealed that DIM-GEE produced parameter 
estimates with smaller estimated variances than the other methods.
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AppendixA. R-syntax to run the DIM-GEE for binary longitudinal
measurements

This Appendix provides a sample code for running the DIM-GEE method.
We assume an incomplete binary longitudinal data set with three measure-
ments (y1, y2, y3), as well as one baseline covariate (x) is available.

# Functions needed to run DIM-GEE

# Propensity score model

psm <- function(cr,v1,v2,v3){

1/glm(cr ~ v1 + v2 + v3, family = binomial(link =

logit))$fitted.values

}

# Multiple imputation by DIM method

# This code is only works for a binary longitudinal data

with 3 measurements and 1 baseline covariate

dualimpute <- function(data, ...){

require(mice)

data <- as.data.frame(data)

colnames(data) <- c("y1", "y2", "y3", "x")

data[,"y1"] <- as.factor(data[,"y1"])

data[,"y2"] <- as.factor(data[,"y2"])

data[,"y3"] <- as.factor(data[,"y3"])

datadim <- data.frame(data, dr1 = NA, dr2 = NA,

dr3 = NA, r1 = NA, r2 = NA, r3 = NA)

datadim[,"r1"] <- !is.na(data[,"y1"])

datadim[,"r2"] <- !is.na(data[,"y2"])

datadim[,"r3"] <- !is.na(data[,"y3"])

inidim <- mice(datadim, max=0, print=FALSE)

meth <- inidim$meth

meth["dr1"] <- "~psm(r1, y2, y3, x)"

meth["dr2"] <- "~psm(r2, y1, y3, x)"

meth["dr3"] <- "~psm(r3, y1, y2, x)"

pred <- inidim$pred

pred["y1", "dr1"] <- 1

pred["y2", "dr2"] <- 1

pred["y3", "dr3"] <- 1
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pred[,c("r1", "r2", "r3")] <- 0

impdim <- mice(datadim, pred = pred, meth=meth,

print=FALSE, maxit = 20, ...)

return(impdim)

}

# pooling multiple imputions

poolres <- function(fit){

m <- length(fit)

dim <- length(fit[[1]]$coefficients)

q <- matrix(NA, m, dim)

u <- matrix(0, dim, dim)

for (i in 1:m){

q[i,] <- fit[[i]]$coefficients

u <- u + fit[[i]]$geese$vbeta

}

Qbar <- apply(q, 2, mean)

Ubar <- u/m

Bvar <- cov(q)

Tvar <- Ubar + Bvar*(1 + 1/m)

res <- t(rbind(Qbar, sqrt(diag(Tvar))))

rownames(res) <- rownames(summary(fit[[1]])$

coefficients)

colnames(res) <- c("Estimate", "Std. Error")

return(res)

}

# data must be in wide format

# m is the number of imputations

# seed is an arbitrary number

impdim <- dualimpute(data, m = 5, seed = 12345)

require(geepack)

fitdim <- list()

for (i in 1:impdim$m){

temp <- complete(impdim,i)

temp <- reshape(temp, varying = c("y1", "y2", "y3"),

direction = "long", v.names = "y")

temp[,"y"] <- as.numeric(as.character(temp[,"y"]))
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temp <- temp[order(temp$id),]

fitdim[[i]] <- geeglm(y ~ x + time + time*x, id = id,

family = binomial, data = temp, corstr = "exchangeable")

}

dimgee <- poolres(fitdim)

dimgee
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