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Multiple Imputation of
Squared Terms

Gerko Vink1,2 and Stef van Buuren1,3

Abstract

We propose a new multiple imputation technique for imputing squares. Cur-
rent methods yield either unbiased regression estimates or preserve data
relations. No method, however, seems to deliver both, which limits researchers
in the implementation of regression analysis in the presence of missing data.
Besides, current methods only work under a missing completely at random
(MCAR) mechanism. Our method for imputing squares uses a polynomial
combination. The proposed method yields both unbiased regression estimates,
while preserving the quadratic relations in the data for both missing at random
and MCAR mechanisms.
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Introduction

Multiple imputation (MI) is the method of choice for many incomplete data

problems. MI incorporates the uncertainty about the missing data by creating

m > 2 imputed data sets. Missing values are filled in under an imputation
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model. The imputed data that result from the imputation model is then ana-

lyzed by the analysis model. Separate analyses can be combined to get a sin-

gle inference or set of estimates by making use of the combining rules

derived by Rubin (1987).

The most critical part of MI is specification of the imputation model. It is

widely accepted that the imputation model should embrace all relations of

scientific interest. Usually, this is done by incorporating the variables of

interest as main factors. However, things become less clear if the scientific

model contains nonlinear terms.

As an example, if we want to predict Y from X and its square X 2, then both

X and X 2 should be included in the imputation model. Leaving the term X 2

out of the imputation model will result in a downward bias of the slopes when

we perform a regression analysis on the imputed data. However, although it

is generally agreed that all squares and interactions should be accounted for

in MI, no consensus on how to do this has been reached.

Von Hippel (2009) reviewed several approaches to imputing squares. The

‘‘transform, then impute’’ method calculates the squares and interactions in

the incomplete data for the cases that have no missing values, and then

imputes the derived variable like any other variable. The ‘‘impute, then trans-

form’’ method imputes variables in their raw form, and then calculates the

derived variable in the imputed data after imputation. These methods were

compared to the passive imputation method (Van Buuren, Boshuizen, and

Knook 1999), implemented in the mice package in R (Van Buuren and

Groothuis-Oudshoorn 2011), and the ice command for Stata (Royston 2005).

Von Hippel (2009) advises to use the transform-then-impute method,

which delivers acceptable regression estimates but heavily distorts the rela-

tionship between X and X 2. Figure 1 shows that for the transform-then-

impute method, imputations do not follow the relation in the population

(observed) data. We agree with Von Hippels conclusion, but do not want

to overlook that the transform-then-impute method yields combinations of

imputed values that would never occur, had the data been observed. Such

imputations are implausible and should be rejected on that ground.

We must note that Von Hippels conclusions are based on a missing com-

pletely at random (MCAR) mechanism (Seaman, Bartlett, and White 2012),

where the missingness does not depend on the data, which is a limitation in

practice. An imputation method would be more powerful if it yields acceptable

inference under the missing at random (MAR) mechanism, where the missing-

ness may depend on the data, but must not depend on the missing data itself.

Because existing methods for imputing squared terms are severely

limited, we propose the polynomial combination approach, which yields
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unbiased regression estimates, while preserving the consistency between the

imputed values, for MAR and MCAR mechanisms.

Method

Formulation of the Problem

The model of scientific interest is

Y ¼ aþ Xb1 þ X 2b2 þ e; ð1Þ

with e � N 0;s2ð Þ. We assume that Y is complete and that X ¼ ðXobs;XmisÞ
and X 2 ¼ X 2

obs;X
2
mis

� �
are partially missing. The problem is to find impu-

tations for X such that estimates of a, b1, b2, and s2 are unbiased, while

ensuring that the quadratic relation between X and X 2 will also hold in the

imputed data.
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Figure 1. Transform-then-impute imputations. Observed (blue) and imputed values
(red) for X and X2.
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Polynomial Combination Method

Define the polynomial combination Z ¼ ðZobs; ZmisÞ as the linear combina-

tion Z ¼ Xb1 þ X 2b2. The idea is to impute the missing values in Z instead

of X and X 2, followed by decomposing the imputed data Z into components X

and X 2. Imputing Z reduces the multivariate imputation problem to a univari-

ate problem, which is easier to manage.

Under the assumption that PðY ; ZÞ is multivariate normal, we can impute

the missing part of Z as Yb� þ e�. Here b� is a random draw from the poster-

ior distribution of the linear regression of Y on Z, and e� is a draw from the

residual distribution Z � Y b̂. In cases where the normal residual distribution

is unrealistic, we can use predictive mean matching (PMM; Little 1988).

The next step is to decompose Z into X and X 2. Under model (1) this is

straightforward. The imputed value Z has two distinct real roots:

X� ¼ �
1

2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Z þ b2

1

q
þ b1

� �
: ð2Þ

Xþ ¼
1

2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2Z þ b2

1

q
� b1

� �
; ð3Þ

where the discriminant D ¼ 4b2Z þ b2
1 must be greater than 0. The case

D ¼ 0 occurs if and only if both b1 and b2 are exactly 0, resulting in just one

distinct real root, namely X0 ¼ �b1=2b2. Since incorporating nonexistent

relationships in the analysis serves no further purpose, we assume that regres-

sion estimates are always unequal to 0.

Given this assumption, for any given Z, we can take either X¼X� or X¼Xþ,

and square it to obtain X 2. Either root is consistent with Z ¼ Xb1 þ X 2b2, but

choice among these two options requires care. Note that the minimum of the

parabola is located at Xmin ¼ �b1=2b2. If we choose X� for all Z, then all

imputed X � Xmin will correspond to points located on the left arm of the para-

bolic function. This is generally not as intended. A sampling mechanism to

determine whether to choose from X� or Xþ for a given Z is needed.

The choice between the roots is made by random sampling, conditional on

Y, Z, and their interaction YZ. Let V ¼ ðVobs;VmisÞ, where Vobs is a binary

random variable defined as 0 if Xobs � Xmin and 1 otherwise. We model the

probability PðV ¼ 1Þ by logistic regression as

logitPðV ¼ 1Þ ¼ YbY þ ZbZ þ YZbYZ ; ð4Þ

on the observed data. Assuming that the same model applies to the missing

values in X (i.e., that the missingness mechanism is ignorable), we calculate
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the predicted probability PðV ¼ 1Þ. As a final step, a random draw from the

binomial distribution is made, and the corresponding (negative or positive)

root is selected as the imputation. This is repeated for each missing value.

Imputation Algorithm

The procedure leads to the following algorithm for imputing squares:

1. Calculate X 2
obs for the observed X.

2. Use PMM to multiply impute Xmis and X 2
mis as if they were unrelated,

resulting in imputations X � and X �2.

3. Estimate the pooled estimates b̂1 and b̂2 by linear regression of Y,

given X ¼ ðXobs;X
�Þ and X 2 ¼ ðX 2

obs;X
�2Þ.

4. Calculate the polynomial combination Z ¼ X b̂1 þ X 2b̂2.

5. Multiply impute Zmis by PMM, resulting in imputations Z�.
6. Calculate roots X� and Xþ given b̂1, b̂2, and Z� using equations (2)

and (3).

7. Calculate the abscissa at the parabolic minimum/maximum

Xmin ¼ �b̂1=2b̂2.

8. Calculate Vobs ¼ 0 if Xobs � Xmin, else Vobs ¼ 1.

9. Impute Vmis by logistic regression of V given Y, Z, and YZ, resulting

in imputations V �.
10. If V � ¼ 0, then assign X � ¼ X�, else set X � ¼ Xþ.

11. Calculate X �2.

The imputations Z� will satisfy Z� ¼ X �b̂1 þ X �2b̂2.

Results

To illustrate the polynomial combination method, we simulated and com-

pared the performance of all methods discussed by Von Hippel (2009)

against the polynomial combination method. Data were generated according

to the model Y ¼ aþ Xb1 þ X 2b2 þ e, where X is randomly generated from

a standard normal distribution. A larger sample size (n¼ 10,000) was chosen

to demonstrate convergence. However, the method works well for smaller

sample sizes. We fixed the population intercept a at 0 and the residual stan-

dard deviation se at 1. Deviations seem to be larger when the slope of both X

and X 2 are larger, hence the population slopes b1 and b2 were set to 1. Let R

be a response indicator with
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R ¼ 1 if X is observed

0 if X is missing

�
; ð5Þ

and let Zmis denote the missing values in Z. Given these settings we created

50 percent joint missingness in X and X 2 according to four MAR mechan-

isms that follow

P R ¼ 0jZobs; Zmis; Yð Þ ¼ P R ¼ 0jZobs; Yð Þ; ð6Þ

using a random draw from a binomial distribution of the same length as Y and

of size 1 with missingness probability equal to the inverse logit

PðR ¼ 0Þ ¼ ea

ð1þ eaÞ :

Setting a ¼ ð� �X þ XiÞ=SDX gives 50 percent left-tailed MAR missing-

ness. Right-tailed, centered and tailed MAR missingness can be created

by setting a ¼ ð �X � XiÞ=SDX , a ¼ :75� ½ð �X � XiÞ=SDX � and a ¼ �:75þ
½ð �X � XiÞ=SDX �, respectively. Adding or substracting a constant moves the

sigmoid curve, which results in different missingness proportions.

As an analysis, we used linear regression to see whether the population val-

ues could be estimated after imputation. We repeated the analyses 100 times.

The regression estimates after applying the polynomial combination

imputation can be found in Table 1. The estimated coefficients of the

imputed X and X 2, the coefficient of the intercept a and the residual standard

deviation se are all close to their respective population values. Missingness

mechanisms that involve the right tail show slightly larger deviations.

In contrast, Table 1 also displays the performance of the impute-then-

transform method regression estimates under the same simulation conditions.

The impute-then-transform method yields biased regression estimates, even

under MCAR.

Table 1 also shows the performance of the passive imputation method. Pas-

sive imputation performance is similar to the problematic performance of the

impute-then-transform method, as both methods calculate X 2 afterward.

Finally, the transform-then-impute method yields unbiased regression

estimates, but only for MCAR. Although some estimates are retrieved, per-

formance is severely impaired under the MAR assumption (see Table 1).

All in all, the polynomial combination method yields regression esti-

mates that are both unbiased and preserve the data relation between X and

X 2. The polynomial combination method also perfectly reproduces the

population relation between X and its square X 2 in the imputed data. See
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Figure 2 for a graphical representation of the population and imputed data

relations between X and X 2, as generated by the polynomial combination

method.

We also looked at the mean and covariance matrix as reproduced by the

imputed data and compared it to the population values. The mean and covar-

iance matrix of ðX ;X 2; Y Þ are

m ¼
0

1

b2

2
4

3
5 and S ¼

1

0 2

b1 2b2 1þ b2
1 þ 2b2

2

2
4

3
5: ð7Þ

Table 1. Average Parameter Estimates for Different Imputation Methods Under Five
Different Missingness Mechanisms Over 100 Imputed Data Sets (n¼ 10,000) With 50
Percent Missing Data.

Missingness Mechanism

MCAR MARleft MARmid MARtail MARright

Polynomial combination
Intercept (a) 0 �0.01 �0.01 �0.05 �0.07
Slope of X (b1) 1 1 1 0.96 0.96
Slope of X2 (b2) 1 1 1.01 1.06 1.09
Residual SD (se) 1 1 1 1.03 1.05
R2 .75 .75 .75 .73 .73

Impute, then transform
Intercept (a) 0.39 0.29 0.26 0.52 0.56
Slope of X (b1) 0.93 0.94 0.87 1.01 1.06
Slope of X2 (b2) 0.61 0.60 0.67 0.56 0.66
Residual SD (se) 1.48 1.44 1.41 1.56 1.62
R2 .45 .48 .50 .39 .34

Passive imputation
Intercept (a) 0.39 0.29 0.26 0.52 0.56
Slope of X (b1) 0.93 0.94 0.87 1.01 1.05
Slope of X2 (b2) 0.61 0.60 0.68 0.56 0.66
Residual SD (se) 1.48 1.45 1.41 1.57 1.62
R2 .45 .48 .50 .38 .34

Transform, then impute
Intercept (a) 0 0.19 �0.13 0.01 �0.05
Slope of X (b1) 1 0.91 0.97 1.14 1.32
Slope of X2 (b2) 1 0.91 0.95 1.14 1.32
Residual SD (se) 1 0.95 1 1.06 1.15
R2 .75 .77 .75 .72 .67

Note: The population parameters are a ¼ 0, b1 ¼ 1, b2 ¼ 1, se ¼ 1, and R2 ¼ :75.
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A set of k mean values can be pooled to a single residual mean value with

Dm ¼
1

k

Xk

i¼1

jmi � mij; ð8Þ

where mi is the ith mean value for the imputed data. Likewise, a pooled resi-

dual covariance matrix can be created by

DS ¼
1

k

Xk

i¼1

jSi � Sij; ð9Þ

where Si is the ith covariance matrix of the imputed data. Performing a small

simulation of n ¼ 100 with various regression weights and combining the

results with equations (8) and (9) yields the following pooled residual mean

and covariance matrix.
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Figure 2. Polynomial combination imputation. Observed (blue) and imputed values
(red) for X and X2.
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Dm ¼
0:003

�0:004

�0:003

2
4

3
5 and DS ¼

�0:004

0 0:007

�0:004 0 �0:012

2
4

3
5: ð10Þ

The results in equation (10) suggest that the mean and covariance matrix

in the population data are accurately preserved in the imputed data. Given

that only normal imputations that preserve the mean and covariance matrix

from the population data can yield unbiased imputations, we can now confi-

dently say that the polynomial combination method yields unbiased regres-

sion estimates and delivers transformed variable imputations that are

consistent with each other.

All computations in this study have been carried out in R and all imputations

are generated with the mice package in R (Van Buuren and Groothuis-

Oudshoorn 2011) with m¼ 5 multiple imputions. A mice.impute.quadratic rou-

tine that implements the polynomial combination method is available in mice.

Conclusion

The polynomial combination method as developed here provides unbiased

estimates for problems where incomplete X and X 2 are both in the complete

data model. It merges imputation techniques and decomposition of the quad-

ratic equation to obtain the same unbiased regression estimates as the basic

transform-then-impute method, while preserving the relations between X and

X 2. Also, it performs well under both MCAR and MAR missingness mechan-

isms. Our advice is to use the polynomial combination method to impute

transformed variables with squared relations.

We note that the simulation conditions used are rather harsh. For example,

50 percent of X is missing and some missingness mechanisms severely limit

the amount of usable predictive information, especially right-tailed MAR

missingness. Also, note that imputations are based on just one covariate.

In real-life data sets, conditions for imputing the data are often much better.

Yet, also for simpler incomplete data problems, the polynomial combination

method yields the best possible inferences even though the difference with

the results from other methods may be smaller.

We limited our calculations and analyses to squares, which are essentially

interactions between two identical variables. Interactions between different

variables remain best imputed using the transform-then-impute method. The

polynomial combination method can be generalized to more complex non-

linear combinations. We expect that the proposed method also applies to

problems in which the scientifically interesting model contains multiple
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versions or transformations of X, such as interactions between different vari-

ables, higher degree polynomial equations and perhaps even splines, which

are essentially piecewise polynomials. Exploring such applications of the

polynomial combination method is subject to future work.
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