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In multiple imputation (MI), the resulting estimates are consistent if the imputation model is correct. To
specify the imputation model, it is recommended to combine two sets of variables: those that are related
to the incomplete variable and those that are related to the missingness mechanism. Several possibilities
exist, but it is not clear how they perform in practice. The method that simply groups all variables together
into the imputation model and four other methods that are based on the propensity scores are presented.
Two of them are new and have not been used in the context of MI. The performance of the methods is
investigated by a simulation study under different missing at random mechanisms for different types of
variables. We conclude that all methods, except for one method based on the propensity scores, perform
well. It turns out that as long as the relevant variables are taken into the imputation model, the form of the
imputation model has only a minor effect in the quality of the imputations.

Keywords: dual modelling; missingness mechanism; misspecification; multiple imputation;
propensity score

AMS Subject classifications: F1.1; F4.3

1. Introduction

Multiple imputation (MI) is an important and influential approach in the analysis of missing
data. Although proposed in the context of nonresponse in sample surveys at first, the technique
is quite general and can be readily used in other settings as well. The merits of MI and recent
software developments have been discussed elsewhere [1–3]. Generally, MI works as follows:
every missing datum is replaced by two or more imputed values in order to reflect uncertainty
about which value to impute and then each completed data set is analysed separately by standard
statistical tools just as if the imputed data were real. Estimates of parameters are combined by
using Rubin’s rule [4, p. 76] to make the final inferences about the data.

The validity of MI depends on the imputed values. If an inappropriate model for the imputation
process is used, it will result in biased and inconsistent conclusions [5]. A full understanding of
the methodology to obtain imputed values is important to obtain unbiased estimates with correct
confidence intervals. Failure to consider all relevant aspects of creating imputation models can
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impact the validity of inferences. For example, if our scientific interest focuses on the correlation
between two variables, then both variables must be present in the imputation process even if only
one of them has missing values. If we mistakenly remove the other variable from the imputation
model, then inferences derived from MI will be biased. In general, the imputation model should
not impose unnecessary restrictions on the variables that will be the subject of the later analysis.
An imputation model should also preserve the relations among the variables in the post-imputation
analysis. As a general guideline, imputation methods should be general enough to encompass the
intended analyses.

To produce high-quality imputed values for a particular incomplete variable, the imputation
model should include variables that are (i) potentially related to the incomplete variable and
(ii) potentially related to the missingness of the incomplete variable. It should be noted that a
particular variable in this case may have different roles: it is part of the complete-data model, the
nonresponse model or both.

There are many ways to combine both types of variables in the complete-data model and the
nonresponse model, yet it is not clear how these models should be represented in the imputation
model. The most commonly used technique is to simply group variables together in both the
complete-data and the nonresponse models as predictors [6–8]. Propensity score methods are
another way to incorporate the nonresponse model into the complete-data model for drawing
imputed values [9,10]. It is also possible to apply a dual modelling strategy [10,11]. It can be
done by adding an appropriate function of the propensity scores into the imputation model. We
introduce two new methods that have not been used in MI.

There appears to be no consensus among statisticians about which method is best. A particular
variable may have different roles and it is not well known how to combine variables that have
different roles.As far as we know, no research has been done yet to evaluate methods for combining
variables in the complete-data and nonresponse models.

In this paper, we compare the performance of several strategies to handle different types of
variables by a simulation study. The methods are evaluated under different conditions of missing
at random (MAR) and also for different kinds of variables (i.e. continuous, dichotomous and
polytomous). The goal of the paper is to help researchers to make informed choices in their
applications.

This article is organized as follows. In the next section, we provide the notation used in this
paper. In Section 3, we define several methods to create imputation models for drawing imputed
values. Evaluation of the imputation methods is studied by simulations in Section 4. The discussion
is given in the last section.

2. Notation

Suppose we have a study that collects observations for n subjects on p different variables
Z = (Z1, . . . , Zp)

′. In practice, for some subjects, some of these observations are missing. The
observed and missing part of each subject is defined as Zobs and Zmis, respectively. Assume our
primary interest is to estimate (population) parameters θ , such as means, correlations, regres-
sion coefficients. For this, we have a substantive model, which is called the complete-data
model. Denote X as all variables in this model where some of them are outcomes and the oth-
ers are explanatory variables. In order to obtain valid inferences under the assumed missing
data mechanism, we specify a (probabilistic) structure for the missingness. An indicator vari-
able R = (R1, . . . , Rp)

′ is defined to show the occurrence of the missing data, where Rj = 1
(j = 1, . . . , p) indicates that the corresponding value of Z is observed. R is subject to a prob-
ability distribution P(R|U), where U indicates variables that are known to have influenced the
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870 S. Jolani et al.

occurrence of missing data. Thus, the nonresponse model can be expressed as R = g(U; ψ),
where ψ represents unknown parameters in the nonresponse model. Variables in the complete-
data model and the nonresponse model may also share some common variables, that is, X and U
are possibly overlapping subsets of Z.

3. Imputation methods

The specification of the imputation model is the most complex step in MI. When the missingness
mechanism is MAR, which means the probability of missingness depends only on the observed
part of data [12], the main task is to determine the posterior predictive distribution of Zmis given
Zobs. In this section, we present several methods for specifying it. Consider a univariate model
where missing values belong only to the outcome variable. Let us define the complete-data model
Yi = Xiβx + εi and the corresponding nonresponse model Ri = Uiβu + τi for i = 1, . . . , n. Table 1
gives a summary of the methods. Each method will be discussed in detail in the following sections.

3.1. Additional predictors

The variables of the nonresponse model are used as additional predictors in the imputation model
[6]. Assume Xobs and Uobs denote observed parts of variables in the incomplete-data model and
the nonresponse model, respectively. Imputed values from the posterior predictive distribution
P(Zmis|Xobs, Uobs) are drawn as outlined in [4, Chapter 5]. Assume a prior distribution for the
parameters θ and calculate the posterior distribution of θ given the observed data, P(θ |Xobs, Uobs).
Then, a value of θ∗ is drawn from its posterior distribution, and values of Z∗

mis are drawn from the
conditional predictive distribution P(Zmis|Xobs, Uobs, θ = θ∗). Repeating these steps separately m
times produces m completed data sets.

3.2. Propensity covariate

Using the propensity scores [13] offers researchers a particularly desirable way for adjusting the
effects of variables in the nonresponse model into the imputation process. The basic strategy is to
find a single number summary of the covariates in the nonresponse model that will remove bias,
if any, from the final estimates in the post-imputation analysis. Propensity scores are defined as
the probability of being observed as a function of the covariates in the nonresponse model. These
scores are unknown and can be estimated from the sample.

A common way to estimate propensity scores is to use a logistic regression model. For the jth
incomplete variable, it assumes log[πij/(1 − πij)] = Uijψj, where Uij is a vector of covariates in
the nonresponse model for ith individual and the jth incomplete variable, πij = P(Rij = 1|Uij),
the probability of being observed given covariates Uij, and ψj is a vector of parameters that are

Table 1. Imputation methods for a univariate incomplete variable y.

Abbreviation Method Model

AP Additional predictors Y = α + Xobsβx + Uobsβu + ε

PC Propensity covariate Y = α + Xobsβx + π̂βπ + ε

PS Propensity stratification Y = αs + Xs,obsβxs + ε

IPC Inverse propensity covariate Y = α + Xobsβx + π̂−1βπ−1 + ε

PDV Propensity dummy variable Y = α + Xobsβx + π̂sβπs + ε

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 1

2:
27

 0
1 

Ju
ne

 2
01

3 



Journal of Statistical Computation and Simulation 871

usually estimated by maximum likelihood. Solving for πij gives

πij = exp(Uijψj)

1 + exp(Uijψj)
, (1)

for i = 1, . . . , n. Estimated propensity scores are obtained by inserting the estimated values for
the parameters in Equation (1).

Assuming that all relevant covariates have been taken into account, the propensity scores can
be directly added into the imputation model as an extra predictor. An obvious advantage is the
ability to summarize multi-dimensional covariates into a one-dimensional covariate. With dozens
or hundreds of variables, it is often difficult to use all variables in an imputation model. To impute
the missing values of a particular variable Zj, the imputation model is defined by P(Zj,mis|Xobs, π̂j),
where π̂j is a vector of the estimated propensity scores for the jth incomplete variable. A similar
principle will be used for other incomplete variables.

3.3. Propensity stratification

Some researchers prefer to coarsen the propensities into a few classes in which missing and
observed individuals have homogenous propensity scores [10]. If we are able to create homoge-
nous classes, then, in theory, missing and observed individuals within each class have an identical
distribution for the incomplete variable. This means that dividing the population into groups of
constant propensity may remove bias due to the nonresponse model. Lavori et al. [9] suggested
that one categorizes the estimated propensity scores into five categories and then apply a nonpara-
metric imputation method, the approximate Bayesian bootstrap [4, p.44], within each category.
Here, we use a slightly different approach. A separate imputation model is defined within each
category. Assume Zs,mis represents the missing part of the data in the category s. The imputation
model is then presented as Ps(Zs,mis|Xs,obs), where Xs,obs denotes the observed part of variables in
the complete-data model. Drawing imputations and replacing them within each category provide
completed data sets that are used in the subsequent analysis.

3.4. Inverse propensity covariate

During the last two decades, there has been growing interest in dual modelling strategies [14–
17]. Estimation based on dual modelling strategies has an interesting property known as double
robustness, which will be explained later in this section. The idea is that the estimated parameter
remains consistent if either a model for the missingness mechanism or a model for the distribution
of the complete-data (but not necessarily both) has been specified correctly. Several authors
considered dual modelling strategies for parameter estimation in missing data analysis [10,11].
Carpenter et al. [18] compared MI and doubly robustness for parameter estimation in the presence
of missing data.

We propose to apply a dual modelling strategy in the imputation procedure in the following
way. Reconsider the complete-data model Yi = Xiβ + εi, where

E(Yi|Xi) = Xiβ, (2)

with E(εi) = 0. An obvious candidate to impute missing values based on Equation (2) is Xiβ̂

(plus some random noise), where β̂ is the estimator of the coefficients from the regression of Yi

on Xi. If the regression model is specified correctly, then the mean of the estimated residuals in the
population will be zero. In most cases, however, the regression model is a rough approximation to
the true regression model. The implication of this misspecification can be serious if P(Yi|Xi, Ri =
1) is different from P(Yi|Xi, Ri = 0).
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Scharfstein et al. [14, pp. 1140–1141] showed that to obtain a doubly robust estimator for
the population mean, it suffices to add the inverse of the propensity scores for each individual,
π−1

i , to the regression model. Here, we suggest to include this term as an extra predictor into
the imputation model for the incomplete variable. The imputation model for our example can be
written as

E(Yi|Xi, Ui) = Xiβ + γ π̂−1
i ,

where π̂i are the estimated propensity scores obtained by Equation (1) and (β, γ )′ is a vector of
coefficients which can be estimated by several approaches such as least squares.

If the complete-data model correctly describes E(Yi|Xi), then inclusion of the propensity scores
variable merely causes the model to be over-fitted. If the nonresponse model is correctly specified,
the propensity-related covariates remove the bias for estimating E(Yi|Xi). It is true as long as the
mean of Yi varies smoothly with πi and the relationship is arbitrarily well approximated by the
linear combination of basis functions added to the complete-data model. This property is known
as double robustness [11].

It should be noted that the logistic model may not accurately represent the true propensities
for outliers (cases having π̂i ≈ 0). If so, the inverse of the estimated propensities become larger,
and the imputed values are inflated. Thus, the inverse propensity covariate (IPC) method might
be sensitive to propensities near zero.

3.5. Propensity dummy variable

The dual modelling imputation model can be created in many ways. We can define a general
framework of the dual modelling imputation model in the spirit of [19] that allows the mean
response to vary with propensities in a flexible way. A simple form of an approximation of the
relationship between the mean of yi and π̂i is a piecewise constant function at the sample quantiles
of π̂i. This method, which has the double robustness property, is defined as follows: (a) classifies
individuals into k classes in which the estimated propensity scores are nearly homogeneous;
(b) creates k − 1 dummy variables to distinguish among the classes; (c) includes these dummy
variables as predictors in the imputation model. In our simulation study, we consider k = 5. Kang
and Schafer [10] proposed the same strategy for the mean estimation in presence of missing data.

4. Evaluation of the imputation methods

This section describes the evaluation of the performance of the five imputation methods described
in the previous section via simulation. We used two data sets for generating incomplete data.

The first data set is the Irish wind speed data [20] which is used for continuous and dichotomous
incomplete variables. It contains measurements of the average daily wind speed at 12 meteoro-
logical stations in Ireland for 18 years (1961–1978). High correlations between the stations, from
0.59 to 0.84, enable us to use the MAR mechanism that generates large differences between the
complete and incomplete records. Here we are not interested in temporal variation between the
measurements. The second data set is a study which was undertaken to assess factors associated
with women’s knowledge, attitude and behavioural towards mammography [21, p. 265]. The
mammography experience (ME) has three categories (0 = never, 1 = during past year, 2 = over
a year ago) which is suitable for a polytomous incomplete variable.

We applied the same setup as [22]. The missing data were generated under MCAR (missing
completely at random) and different types of MAR mechanism: MARRIGHT, MARTAIL and
MARMID. MARRIGHT removes large values in the distribution of the data. As an example, if Y
is a continuous variable, a relatively large fraction of missing values occur in the large values of Y .
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MARTAIL creates more missing values in both tails of this distribution. In other words, missing
values are more likely with large or small values of Y . MARMID produces more missing values in
the middle of the distribution which means that most missing values are located in the centre of the
distribution of Y . Simulations were done using 1000 replications. All computations were done in
R, v 2.11.1, using MICE (MICE, v 2.5; [23]). The results are presented in the following sections.

4.1. Univariate continuous

Five locations (z1, . . . , z5) were selected from the Irish wind speed data. The original data z1 were
replaced by the newly generated data to avoid any issues of inaccuracy of model fit. A random
sample of n = 400 was taken; 50% of the observations of z1 were missing. In this case, the
complete-data model was a linear regression y1 = z1 given covariates x = (z2, . . . , z5). A logistic
regression was also used to calculate propensities for each individual in y1. Covariates in the
nonresponse model were defined by u = (z2, . . . , z5). The number of imputed data sets was 5. We
chose the following complete-data statistics to investigate the validity of the imputation methods:
the mean, the quartiles (the 25% quantile, median, and 75% quantile) and the Pearson correlation
coefficient between the incomplete variable and the covariates. In addition, we calculated the
coverage of a 95% confidence interval for each statistic.

Table 2 reports the simulation results. Except for propensity stratification (PS), all methods
perform well. They produce unbiased estimates of the mean and the quartiles. The empirical
coverage rates are very close to the nominal coverage (95%). In some cases, the coverage rate
even exceeds the nominal level. The estimates of the Pearson correlations are unbiased with
appropriate coverage rates. The PS method produces slightly biased estimates of the mean under
MARMID. We observe biased estimates of the first quartile for all mechanisms even under MCAR.
The estimate of the second quartile is also biased under MARRIGHT. Pearson’s correlations are
underestimated in all mechanisms. In addition, the coverage levels are less than or equal to 90%
under MARRIGHT.

4.2. Univariate dichotomous

We selected five locations (z1, . . . , z5) from the Irish wind speed data for the dichotomous case.
Following [22], z1 was dichotomized equally and then replaced with the newly generated data.
Missing values were subsequently created for a sample of size 400. In this case, the relation
between y1 = z1 and x = (z2, . . . , z5) was linked by a logistic function. Propensity scores were
also estimated by a logistic regression with covariate u = (z2, . . . , z5). The same setup as the
continuous case was used here. The quality of the five imputation methods was assessed by the
proportions of each category and the conditional mean x̄ within each category.

Table 3 presents the simulation results for the dichotomous incomplete variable. The probability
of belonging to the first category (y1 = 0) is estimated correctly by the different methods, and
the coverage rates achieve the nominal level. As in Table 2, we get biased estimates for PS.
Under MARRIGHT, the IPC and propensity dummy variable (PDV) introduce some upward
bias in the estimation of the conditional mean when y1 = 0, but coverage rates remain in the
acceptable region.

4.3. Univariate polytomous

We used the mammography data set to study the polytomous model. ME was the target variable,
and the other five variables (z1, . . . , z5) were the predictors of ME. The number of records in this
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Table 2. Properties of different imputation methods in a continuous variable y1 under MCAR, MARRIGHT, MARTAIL
and MARMID.

Propensity Scores Dual modelling

Statistic Pop AP PC PS IPC PDV

MCAR E(y1) 11.66 11.66 (96) 11.66 (95) 11.68 (96) 11.66 (96) 11.66 (96)
P25(y1) 8.16 8.14 (98) 8.15 (98) 8.06 (97) 8.14 (98) 8.13 (98)
P50(y1) 11.42 11.40 (98) 11.40 (97) 11.39 (96) 11.40 (98) 11.40 (97)
P75(y1) 14.90 14.89 (98) 14.90 (98) 14.94 (97) 14.89 (98) 14.90 (98)
r(y1 · x1) 0.72 0.72 (94) 0.71 (95) 0.68 (92) 0.72 (94) 0.72 (94)
r(y1 · x2) 0.59 0.58 (95) 0.58 (95) 0.55 (95) 0.58 (95) 0.58 (95)
r(y1 · x3) 0.66 0.66 (95) 0.66 (94) 0.62 (94) 0.66 (94) 0.65 (95)
r(y1 · x4) 0.61 0.60 (94) 0.60 (94) 0.57 (93) 0.60 (94) 0.60 (94)

MARRIGHT E(y1) 11.66 11.68 (96) 11.67 (96) 11.70 (96) 11.68 (96) 11.68 (96)
P25(y1) 8.16 8.14 (97) 8.13 (97) 7.80 (92) 8.13 (97) 8.11 (97)
P50(y1) 11.42 11.40 (97) 11.40 (97) 11.13 (91) 11.39 (97) 11.38 (97)
P75(y1) 14.90 14.93 (98) 14.91 (97) 14.96 (97) 14.89 (97) 14.93 (98)
r(y1 · x1) 0.72 0.72 (94) 0.72 (93) 0.64 (83) 0.70 (94) 0.71 (93)
r(y1 · x2) 0.59 0.58 (93) 0.58 (94) 0.52 (90) 0.57 (94) 0.58 (93)
r(y1 · x3) 0.66 0.66 (94) 0.65 (95) 0.58 (88) 0.64 (94) 0.65 (94)
r(y1 · x4) 0.61 0.60 (95) 0.60 (95) 0.53 (90) 0.59 (94) 0.60 (93)

MARTAIL E(y1) 11.66 11.67 (96) 11.67 (96) 11.66 (96) 11.67 (96) 11.67 (95)
P25(y1) 8.16 8.16 (97) 8.15 (96) 8.06 (97) 8.15 (97) 8.14 (97)
P50(y1) 11.42 11.42 (97) 11.42 (97) 11.36 (96) 11.41 (97) 11.41 (97)
P75(y1) 14.90 14.89 (98) 14.90 (98) 14.89 (97) 14.90 (98) 14.89 (98)
r(y1 · x1) 0.72 0.72 (96) 0.72 (95) 0.67 (92) 0.72 (94) 0.71 (94)
r(y1 · x2) 0.59 0.58 (95) 0.58 (95) 0.54 (94) 0.58 (95) 0.58 (95)
r(y1 · x3) 0.66 0.66 (95) 0.66 (96) 0.61 (93) 0.66 (95) 0.65 (94)
r(y1 · x4) 0.61 0.60 (95) 0.60 (96) 0.56 (92) 0.60 (95) 0.60 (94)

MARMID E(y1) 11.66 11.67 (95) 11.67 (95) 11.81 (96) 11.67 (95) 11.67 (95)
P25(y1) 8.16 8.14 (98) 8.14 (98) 8.06 (97) 8.13 (96) 8.11 (97)
P50(y1) 11.42 11.43 (98) 11.43 (98) 11.41 (97) 11.42 (98) 11.43 (97)
P75(y1) 14.90 14.93 (98) 14.93 (97) 14.99 (97) 14.92 (98) 14.95 (97)
r(y1 · x1) 0.72 0.72 (95) 0.72 (95) 0.69 (97) 0.72 (95) 0.72 (95)
r(y1 · x2) 0.59 0.58 (95) 0.58 (95) 0.56 (94) 0.58 (95) 0.58 (95)
r(y1 · x3) 0.66 0.66 (95) 0.66 (95) 0.63 (93) 0.66 (95) 0.66 (95)
r(y1 · x4) 0.61 0.60 (94) 0.60 (95) 0.57 (94) 0.60 (95) 0.60 (95)

Notes: E(·) represents the mean of y1. P25(y1), P50(y1) and P75(y1) are used for the first, second and third quartiles of y1. The Pearson
correlation between y1 and x is denoted by r(y, x). The numbers represent the population value (Pop), and the average of the estimated
quantity for the imputation methods is indicated by the name of the methods as follows: additional predictors (AP), propensity covariate (PC),
propensity stratification (PS), propensity dummy variable (PDV), inverse propensity covariate (IPC); 95% confidence interval coverage is
displayed in parentheses. Bias > 0.1 and coverage < 90 are given in bold.

data set was 412. The same setup was used as in Section 4.1. The complete-data model is a polyto-
mous logistic regression with dependent variable ME (= y1) and predictors x = (z1, . . . , z5). The
nonresponse model is also a logistic function of missing indicators depending on u = (z1, . . . , z5).

Simulation results for the polytomous incomplete variable are shown in Table 4. The same
statistics as the dichotomous incomplete variable are considered here. All methods perform well
in estimating the marginal probability of observing the argument in y1. The coverage levels do not
show substantially different results from the nominal level except for the PS under MARRIGHT,
where the coverage levels are relatively low. If we ignore the PS, the conditional expectation is
estimated correctly under all missingness mechanisms. The PS does not perform well under
MARRIGHT as shown by the highly biased estimates. In general, the coverage rates of all
methods achieve the nominal level; sometimes the coverage rates are less than 90%, especially
under MARRIGHT.
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Table 3. Properties of different imputation methods in a dichotomous variable y1 under MCAR, MARRIGHT,
MARTAIL and MARMID.

Propensity scores Dual modelling

Statistic Pop AP PC PS IPC PDV

MCAR P(y1 = 0) 0.50 0.50 (95) 0.50 (95) 0.50 (96) 0.50 (95) 0.50 (96)
E(x1|y1 = 0) 8.59 8.61 (96) 8.61 (95) 8.78 (95) 8.61 (95) 8.64 (95)
E(x1|y1 = 1) 16.17 16.16 (95) 16.16 (96) 16.03 (95) 16.16 (95) 16.14 (95)
E(x2|y1 = 0) 9.24 9.24 (94) 9.24 (94) 9.36 (95) 9.25 (95) 9.27 (95)
E(x2|y1 = 1) 14.09 14.09 (96) 14.08 (96) 14.01 (94) 14.08 (95) 14.07 (96)
E(x3|y1 = 0) 7.09 7.12 (95) 7.12 (96) 7.27 (94) 7.13 (96) 7.16 (96)
E(x3|y1 = 1) 13.84 13.84 (96) 13.84 (96) 13.72 (94) 13.84 (96) 13.82 (96)
E(x4|y1 = 0) 7.12 7.13 (96) 7.13 (96) 7.24 (96) 7.13 (96) 7.16 (96)
E(x4|y1 = 1) 12.50 12.50 (96) 12.50 (95) 11.46 (96) 12.50 (95) 12.48 (95)

MARRIGHT P(y1 = 0) 0.50 0.51 (96) 0.51 (96) 0.46 (84) 0.51 (96) 0.52 (96)
E(x1|y1 = 0) 8.59 8.67 (95) 8.68 (96) 9.34 (75) 8.82 (98) 8.85 (97)
E(x1|y1 = 1) 16.17 16.17 (95) 16.14 (95) 15.94 (95) 16.07 (95) 16.11 (95)
E(x2|y1 = 0) 9.24 9.29 (95) 9.30 (94) 9.73 (84) 9.38 (96) 9.40 (96)
E(x2|y1 = 1) 14.09 14.08 (96) 14.06 (96) 13.94 (95) 14.02 (96) 14.05 (96)
E(x3|y1 = 0) 7.09 7.16 (96) 7.17 (96) 7.77 (76) 7.29 (97) 7.32 (97)
E(x3|y1 = 1) 13.84 13.84 (93) 13.82 (93) 13.64 (93) 13.76 (94) 13.80 (95)
E(x4|y1 = 0) 7.12 7.18 (94) 7.18 (95) 7.67 (82) 7.28 (96) 7.30 (95)
E(x4|y1 = 1) 12.50 12.49 (95) 12.47 (96) 12.32 (94) 12.42 (96) 12.45 (96)

MARTAIL P(y1 = 0) 0.50 0.50 (95) 0.50 (96) 0.50 (95) 0.50 (95) 0.50 (95)
E(x1|y1 = 0) 8.59 8.63 (96) 8.63 (96) 8.89 (92) 8.64 (95) 8.71 (96)
E(x1|y1 = 1) 16.17 16.14 (96) 16.14 (96) 15.97 (93) 16.14 (96) 16.11 (96)
E(x2|y1 = 0) 9.24 9.26 (95) 9.26 (94) 9.43 (95) 9.27 (94) 9.31 (96)
E(x2|y1 = 1) 14.09 14.09 (95) 14.09 (96) 13.98 (95) 14.09 (95) 14.07 (95)
E(x3|y1 = 0) 7.09 7.14 (95) 7.14 (96) 7.37 (92) 7.14 (96) 7.20 (96)
E(x3|y1 = 1) 13.84 13.81 (96) 13.81 (96) 13.67 (92) 13.82 (95) 13.79 (96)
E(x4|y1 = 0) 7.12 7.15 (96) 7.14 (95) 7.33 (93) 7.15 (96) 7.20 (96)
E(x4|y1 = 1) 12.49 12.48 (95) 12.48 (95) 12.36 (95) 12.48 (95) 12.45 (95)

MARMID P(y1 = 0) 0.50 0.50 (96) 0.50 (95) 0.50 (96) 0.50 (97) 0.50 (96)
E(x1|y1 = 0) 8.59 8.60 (95) 8.61 (94) 8.67 (95) 8.62 (95) 8.65 (95)
E(x1|y1 = 1) 16.17 16.19 (95) 16.19 (93) 16.07 (95) 16.19 (94) 16.17 (94)
E(x2|y1 = 0) 9.24 9.26 (95) 9.26 (96) 9.24 (95) 9.27 (95) 9.30 (95)
E(x2|y1 = 1) 14.09 14.11 (94) 14.11 (95) 14.03 (96) 14.10 (94) 14.09 (95)
E(x3|y1 = 0) 7.09 7.12 (94) 7.12 (95) 7.09 (95) 7.13 (95) 7.16 (94)
E(x3|y1 = 1) 13.84 13.87 (95) 13.87 (96) 13.74 (96) 13.87 (95) 13.85 (96)
E(x4|y1 = 0) 7.12 7.13 (94) 7.13 (94) 7.12 (95) 7.14 (95) 7.17 (95)
E(x4|y1 = 1) 12.49 12.52 (94) 12.52 (94) 12.42 (96) 12.51 (94) 12.50 (94)

Notes: P(·) is the marginal probability of observing the argument in y1. E(·|·) represents the conditional expectation of predictors. The
numbers represent the population value (Pop), and the average of the estimated quantity for the imputation methods is indicated by the
name of the methods as follows: additional predictors (AP), propensity covariate (PC), propensity stratification (PS), propensity dummy
variable (PDV), inverse propensity covariate (IPC) along with their empirical coverage (in parentheses). Bias >0.1 and coverage <90 are
given in bold.

4.4. Multivariate continuous

This section studies the performance of the five imputation methods for multivariate missing data.
Six locations (z1, . . . , z6) were selected from the Irish wind speed data. We draw two data sets of
size 400: one from the multivariate normal distribution to present an ideal case where there is no
model misspecification and one from the raw data to present a practical situation that evaluates
the robustness of the imputation methods.

Conditional on the observed data, four variables y = (z1, . . . , z4) were subject to missingness
(see [22] for details). The percentage of cases with missing data was 62.5. We used the Gibbs sam-
pler technique [24] for the imputation process. The sampler consists of a set of linear regressions of
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Table 4. Properties of different imputation methods in a polytomous variable y1 under MCAR, MARRIGHT, MARTAIL
and MARMID.

Propensity scores Dual modelling

Statistic Pop AP PC PS IPC PDV

MCAR P(y1 = 0) 0.25 0.25 (93) 0.25 (94) 0.26 (92) 0.25 (93) 0.26 (93)
P(y1 = 1) 0.18 0.18 (93) 0.18 (92) 0.19 (92) 0.18 (92) 0.18 (93)
P(y1 = 2) 0.57 0.57 (94) 0.57 (92) 0.55 (91) 0.57 (92) 0.56 (93)
E(x1|y1 = 0) 6.69 6.69 (94) 6.69 (94) 6.73 (94) 6.70 (93) 6.70 (95)
E(x1|y1 = 1) 7.19 7.21 (92) 7.21 (92) 7.22 (93) 7.21 (93) 9.21 (93)
E(x1|y1 = 2) 8.06 8.06 (99) 8.06 (99) 8.06 (99) 8.06 (99) 8.06 (98)

MARRIGHT P(y1 = 0) 0.25 0.26 (92) 0.26 (92) 0.27 (80) 0.26 (92) 0.26 (92)
P(y1 = 1) 0.18 0.18 (91) 0.18 (90) 0.20 (78) 0.18 (90) 0.18 (90)
P(y1 = 2) 0.57 0.56 (93) 0.56 (91) 0.53 (96) 0.56 (92) 0.56 (90)
E(x1|y1 = 0) 6.69 6.70 (88) 6.72 (88) 6.91 (66) 6.75 (87) 6.74 (87)
E(x1|y1 = 1) 7.19 7.21 (88) 7.23 (87) 7.45 (69) 7.26 (86) 9.24 (83)
E(x1|y1 = 2) 8.06 8.04 (99) 8.03 (99) 7.90 (86) 8.01 (96) 8.02 (96)

MARTAIL P(y1 = 0) 0.25 0.26 (92) 0.26 (92) 0.26 (92) 0.26 (93) 0.26 (92)
P(y1 = 1) 0.18 0.18 (91) 0.18 (91) 0.19 (90) 0.18 (91) 0.18 (91)
P(y1 = 2) 0.57 0.56 (92) 0.56 (93) 0.55 (90) 0.56 (93) 0.56 (92)
E(x1|y1 = 0) 6.69 6.71 (92) 6.71 (92) 6.78 (90) 6.71 (92) 6.72 (91)
E(x1|y1 = 1) 7.19 7.21 (89) 7.20 (90) 7.27 (88) 7.20 (88) 9.20 (88)
E(x1|y1 = 2) 8.06 8.06 (96) 8.07 (96) 8.03 (96) 8.07 (96) 8.07 (96)

MARMID P(y1 = 0) 0.25 0.26 (93) 0.26 (94) 0.26 (91) 0.26 (94) 0.26 (92)
P(y1 = 1) 0.18 0.18 (92) 0.18 (92) 0.19 (90) 0.18 (92) 0.18 (91)
P(y1 = 2) 0.57 0.56 (94) 0.56 (94) 0.55 (90) 0.56 (93) 0.56 (91)
E(x1|y1 = 0) 6.69 6.69 (96) 6.69 (97) 6.75 (93) 6.70 (95) 6.71 (95)
E(x1|y1 = 1) 7.19 7.18 (95) 7.18 (95) 7.25 (93) 7.19 (94) 7.20 (95)
E(x1|y1 = 2) 8.06 8.05 (99) 8.06 (99) 8.03 (99) 8.06 (99) 8.06 (99)

Notes: The marginal probability of observing the argument and the conditional expectation of predictor variables are shown by P(·) and
E(·|·), respectively. The population value is given by (Pop), and the average of the estimated quantity for the imputation methods is also
indicated by the name of the methods as follows: additional predictors (AP), propensity covariate (PC), propensity stratification (PS),
propensity dummy variable (PDV), inverse propensity covariate (IPC). Empirical coverage levels are given in parentheses. Bias >0.1 and
coverage <90 are given in bold.

each element y on all other variables. Propensity scores for each element of y were also calculated
within the sampler. For instance, the propensity scores of z1 were calculated using the variables
z2, . . . , z6 that were completed in the previous iteration of the Gibbs sampler. The number of Gibbs
sampling iterations was 5, and the number of multiple imputed data sets was 10.

Table 5 shows the simulation results for the multivariate missing data under MARRIGHT.
Estimates of the mean are correct with high coverage rates in both data sets. Quartiles are estimated
properly, and the coverage rates are almost equal to the nominal level. The PS produces biased
results for the quartiles, but the coverage rates remain at an acceptable level except for z4. Estimates
of the third quartile for z1 and z2 and the first quartile for z4 are also affected by the missing data
in all methods. Except for PS, the Pearson correlation is estimated accordingly everywhere with
high coverage rates. We observe low coverage rates for the estimated Pearson correlation between
z1 and z4 in the raw data.

4.5. Conclusion

Properties of the imputation methods were evaluated in a wide range of the complete-data statistics
such as the mean, quartiles and Pearson correlation. We observed that all methods perform very
well, except for PS. The PS method produces biased results especially when there is a dichotomous
or polytomous incomplete variable. The IPC and PDV methods sometimes are less accurate in
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Table 5. Properties of different imputation methods in multivariate continuous variables (z1, . . . , z4) under MARRIGHT from two data sets (simulated and raw) based on Irish wind speed
data.

Simulated data Raw data

Propensity scores Dual modelling Propensity scores Dual modelling

Statistic Pop AP PC PS IPC PDV Pop AP PC PS IPC PDV

E(z1 ) 12.36 12.38 (96) 12.38 (95) 12.32 (98) 12.35 (94) 12.38 (96) 12.36 12.37 (96) 12.37 (94) 12.31 (98) 12.37 (95) 12.36 (96)
P25(z1) 8.61 8.56 (97) 8.55 (97) 8.47 (97) 8.53 (97) 8.55 (97) 8.12 8.17 (97) 8.16 (97) 8.06 (97) 8.17 (96) 8.16 (97)
P50(z1) 12.40 12.36 (96) 12.35 (97) 12.26 (94) 12.32 (96) 12.35 (96) 11.71 11.77 (98) 11.77 (97) 11.64 (96) 11.76 (96) 11.75 (97)

P75(z1) 16.25 16.15 (97) 16.15 (97) 16.05 (94) 16.12 (95) 16.15 (97) 15.92 15.89 (98) 15.90 (98) 15.75 (96) 15.88 (97) 15.87 (98)
E(z2) 11.66 11.66 (95) 11.67 (93) 11.63 (98) 11.64 (94) 11.66 (96) 11.66 11.66 (95) 11.66 (95) 11.62 (98) 11.66 (96) 11.66 (96)
P25(z2) 8.26 8.27 (98) 8.26 (97) 8.14 (97) 8.24 (96) 8.26 (98) 8.00 7.91 (97) 7.90 (97) 7.48 (96) 7.89 (96) 7.89 (97)
P50(z2) 11.68 11.65 (96) 11.65 (97) 11.57 (96) 11.61 (95) 11.64 (96) 10.92 11.02 (97) 11.00 (97) 10.93 (98) 10.99 (98) 10.99 (98)

P75(z2) 15.16 15.03 (96) 15.04 (96) 14.99 (95) 15.00 (95) 15.03 (97) 14.67 14.80 (97) 14.80 (97) 14.71 (97) 14.78 (97) 14.77 (98)
E(z3) 10.46 10.47 (95) 10.45 (96) 10.45 (98) 10.46 (95) 10.47 (95) 10.46 10.45 (96) 10.46 (94) 10.44 (98) 10.46 (95) 10.45 (97)
P25(z3) 7.10 7.11 (97) 7.10 (97) 7.05 (97) 7.11 (96) 7.10 (96) 6.75 6.77 (97) 6.78 (96) 6.70 (96) 6.78 (97) 6.76 (97)
P50(z3) 10.51 10.46 (96) 10.43 (95) 10.38 (94) 10.43 (97) 11.45 (95) 9.96 9.97 (98) 9.96 (97) 9.86 (97) 9.97 (98) 9.95 (98)

P75(z3) 13.83 13.79 (97) 13.76 (97) 13.71 (96) 13.75 (96) 13.79 (97) 13.54 13.55 (98) 13.54 (97) 13.45 (97) 13.54 (98) 13.54 (98)
E(z4) 9.79 9.80 (95) 9.81 (94) 9.76 (90) 9.79 (95) 9.80 (95) 9.79 9.79 (94) 9.80 (95) 9.76 (98) 9.80 (95) 9.79 (94)
P25(z4) 6.54 6.42 (96) 6.41 (94) 6.36 (87) 6.40 (95) 6.42 (96) 6.00 6.05 (96) 6.05 (96) 5.98 (98) 6.07 (97) 6.04 (97)
P50(z4) 9.75 9.78 (97) 9.78 (96) 9.69 (87) 9.76 (96) 9.78 (97) 9.21 9.21 (97) 9.20 (96) 9.07 (95) 9.22 (97) 9.19 (96)

P75(z4) 13.14 13.15 (97) 13.15 (97) 13.13 (85) 13.13 (97) 13.15 (98) 12.96 12.92 (97) 12.93 (97) 12.79 (96) 12.91 (97) 12.90 (97)
r(z1.z2) 0.72 0.72 (94) 0.72 (95) 0.61 (96) 0.72 (94) 0.72 (95) 0.72 0.71 (92) 0.72 (90) 0.59 (95) 0.71 (91) 0.71 (92)
r(z1.z3) 0.83 0.83 (95) 0.83 (95) 0.73 (96) 0.83 (95) 0.83 (95) 0.83 0.84 (90) 0.84 (88) 0.69 (97) 0.84 (91) 0.84 (93)
r(z1.z4) 0.73 0.73 (95) 0.73 (95) 0.64 (97) 0.73 (95) 0.73 (95) 0.73 0.77 (76) 0.77 (73) 0.62 (80) 0.77 (81) 0.77 (80)
r(z1.z5) 0.75 0.75 (95) 0.75 (95) 0.70 (97) 0.75 (94) 0.75 (95) 0.75 0.75 (93) 0.75 (94) 0.68 (98) 0.75 (96) 0.75 (94)

r(z1.z6) 0.62 0.62 (95) 0.62 (95) 0.58 (97) 0.62 (94) 0.62 (96) 0.62 0.63 (92) 0.63 (93) 0.57 (98) 0.63 (94) 0.63 (93)
r(z2.z3) 0.59 0.58 (94) 0.58 (95) 0.50 (97) 0.58 (95) 0.58 (95) 0.59 0.60 (94) 0.60 (94) 0.49 (98) 0.60 (95) 0.60 (94)
r(z2.z4) 0.66 0.66 (95) 0.66 (95) 0.57 (97) 0.66 (94) 0.65 (95) 0.66 0.68 (92) 0.68 (91) 0.55 (97) 0.68 (92) 0.67 (92)
r(z2.z5) 0.61 0.60 (96) 0.61 (96) 0.55 (97) 0.60 (94) 0.60 (96) 0.61 0.59 (92) 0.60 (92) 0.54 (97) 0.60 (94) 0.60 (93)

r(z2.z6) 0.47 0.47 (95) 0.48 (95) 0.43 (97) 0.48 (94) 0.47 (96) 0.47 0.46 (91) 0.47 (91) 0.43 (97) 0.47 (93) 0.46 (93)
r(z3.z4) 0.79 0.79 (95) 0.79 (96) 0.70 (97) 0.78 (96) 0.78 (96) 0.79 0.78 (93) 0.78 (93) 0.67 (97) 0.78 (93) 0.78 (93)
r(z3.z5) 0.82 0.82 (95) 0.82 (95) 0.77 (97) 0.82 (96) 0.82 (96) 0.82 0.82 (94) 0.82 (92) 0.75 (98) 0.82 (95) 0.82 (95)

r(z3.z6) 0.67 0.67 (94) 0.67 (94) 0.63 (98) 0.67 (95) 0.67 (95) 0.67 0.67 (93) 0.68 (94) 0.62 (98) 0.67 (94) 0.67 (93)
r(z4.z5) 0.84 0.84 (95) 0.84 (96) 0.80 (97) 0.84 (95) 0.84 (96) 0.84 0.85 (93) 0.85 (90) 0.78 (98) 0.85 (92) 0.85 (94)
r(z4.z6) 0.77 0.77 (94) 0.77 (94) 0.73 (98) 0.77 (96) 0.76 (95) 0.77 0.77 (92) 0.77 (92) 0.71 (98) 0.77 (93) 0.77 (92)

Notes: The mean and quartiles for each incomplete variable are shown as E(·), P25(·), P50(·) and P75(·). r(·, ·) represents the Pearson correlation between variables. Variables z5 and z6 are complete. The numbers represent the
population value (Pop), and the average of the estimated quantity for the imputation methods is indicated by the name of the methods as follows: additional predictors (AP), propensity covariate (PC), propensity stratification (PS),
propensity dummy variable (PDV), inverse propensity covariate (IPC); 95% confidence interval coverage is displayed in parentheses. Bias >0.1 and coverage <90 are given in bold.
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the MARRIGHT mechanism. The results are also very similar for additional predictor (AP) and
propensity covariate (PC) methods.

5. Discussion

It has been widely acknowledged that the imputation model should incorporate predictors that
appear in the complete-data model and predictors that are related to the nonresponse model. It
is not clear, however, how these two types of predictors should be combined into one model to
generate the imputed data. This paper investigated the properties of five different combination
methods. Under MAR the results of the five methods were similar, although the PS was less
precise. This means that, except for PS, there is no a priori preference between the four other
methods based on their statistical properties.

The additive predictors imputation method is simple to use because it consists of just adding
extra variables to the imputation model. However, a data set may contain lots of variables, say
hundreds or thousands, which may lead to models that are too large. Including all variables into
the imputation model may therefore not always be the best solution.

When the number of variables grows, we may find that the ideal model is too large to implement.
The imputation method based on the propensity scores has an attractive feature, which is the ability
of replacing a potentially large set of variables in the nonresponse model with a single aggregate of
these variables. However, imputation methods using propensity scores are not without limitations.
For instance, logistic regression is often used to estimate propensity scores, but may be unrealistic
for the data at hand.

Another approach is the dual modelling imputation method, which can be implemented in sev-
eral ways. We investigated the use of the inverse of the propensity scores. Like the propensity
scores method, the inverse propensity scores method is sensitive to misspecification of the propen-
sity model especially when the propensity scores are close to zero. Therefore, care should be taken
to select an estimator that is not sensitive to the misspecification of the nonresponse model.

Here, we assumed both the complete-data and the nonresponse models were correctly specified.
But, in practice, it is hard to discover whether the models are correct. We considered different
variants of the MAR mechanism. Although MAR is highly useful as an initial assumption, it may
be dubious for certain applications. We do not yet know if our results generalize to missing not
at random.

This paper emphasizes the combination of the complete-data model and the nonresponse model.
Four methods out of five perform equally well and the PS method is not recommended. From the
four methods, AP is the easiest to implement. In short, we underline that it does matter which
variables are included in the imputation model, but it does not matter so much how to do this.
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