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10.1  Introduction

In the early days of multilevel analysis, Goldstein wrote: “We shall require 
and assume that all the necessary data at each level are available” (Goldstein, 
1987). Despite the many conceptual and computational advances that have 
been made over the last two decennia, Goldstein’s requirement is still dom-
inant today. To illustrate this, consider how modern software for fitting 
multilevel models deals with missing data. Dedicated packages like MLwiN 
(Rasbash, Steel, Browne, & Prosser, 2005) and HLM (Raudenbush, Bryk, & 
Congdon, 2008) remove all level-1 units with missing values on any level-1 
variable. If level-2 explanatory variables have missing values, the associated 
level-2 units are deleted, including all level-1 data. Thus, if the age of the 
teacher is unknown, all data of all children within the class are removed 
prior to analysis. Multilevel procedures in general purpose statistical soft-
ware, like SAS PROC MIXED (Littell, Milliken, Stroup, & Wolfinger, 1996), 
SPSS MIXED (SPSS Inc., 2008), STATA xtmixed (StataCorp LP, 2008), 
S-PLUS library nlme3 and the R package nlme (Pinheiro & Bates, 2000), 
and the R package arm (Gelman & Hill, 2007) use a similar approach. 
Deletion is not only wasteful of costly collected data, but it may also bias 
the estimates of interest (Little, 1992; Little & Rubin, 2002).

Alternative approaches have been tried. In older versions of HLM it was 
possible to perform pairwise deletion, a method to calculate the covariance 
matrix where each element is based on the full number of complete cases for 
that pair of variables. However, this approach causes estimation problems 
due to the possibility of nonpositive definite covariance matrices. Also, 
model comparisons in terms of the log-likelihood are debatable since there 
is no clear-cut way to calculate the degrees of freedom. Version 6 of HLM 
therefore dropped this feature.

Mplus (Muthén & Muthén, 2007) uses full information maximum like-
lihood. This approach specifically deals with the case of multiple outcome 
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variables. If one or more outcomes are miss-
ing, the values of the remaining dependent 
variables are still used. In this way, there is no 
need to delete the whole level-1 unit. When 
there are missing data in any covariates how-
ever, Mplus resorts to listwise deletion.

Some general purpose programs offer 
modules to impute missing data (e.g., SAS 
PROC MI and the new Multiple Imputation 
procedure in SPSS V17.0). These approaches 
generally ignore the clustering structure in 
hierarchical data. Not much is known how 
imputation by such procedures affects the 
complete data analysis.

This chapter discusses critical issues asso-
ciated with imputation of multilevel data. 
Section 10.2 introduces the notation used 
and outlines how two formulations of the 
same model are related. Section 10.3 dissects 
the multilevel missing data problem into five 
main questions that need to be addressed. 
Section 10.4 outlines six different strategies 
for dealing with the missing data problem. 
Section 10.5 describes a multilevel imputa-
tion method for univariate data, and dis-
cusses its properties. Section 10.6 describes a 
method to apply the univariate method iter-
atively to multivariate missing data. Finally, 
Section 10.7 sums up the major points and 
provides directions for future research.

10.2 �T wo Formulations 
of the Linear 
Multilevel Model

Let yj denote the nj × 1 vector containing 
observed outcomes on units i (i = 1,…,nj) 
within class j (j = 1, …, J). The univariate 
linear mixed-effects model (Laird & Ware, 
1982) is written as
	 yj = Xjβ + Zjuj + ej	 (10.1)

where Xj is a known nj × p design matrix in 
class j associated with the common p × 1 
fixed effects vector β, and where Zj is a 
known nj × q design matrix in class j associ-
ated with the q × 1 random effect vectors uj. 
The random effects uj are independently and 
interchangeably normally distributed as uj ~ 
N(0, Ω). The number of random effects q is 
typically smaller than the number of fixed 
effects p. Symbol ej denotes the nj × 1 vec-
tor of residuals, which are independently 
normally distributed as ej ~ N(0, σj

2I(nj)) for 
j = 1, …, J. It is often assumed that the resid-
ual variance is equal for all classes: σj

2 = σ2. 
In addition, ej and uj are uncorrelated so 
cov(ej, uj) = nj0q, an nj × q matrix of zeroes. 
Model formulation of Equation 10.1 clearly 
separates fixed from random effects.

It is also convenient to conceptualize 
Equation 10.1 as constructed from a set of 
different levels. To see how this works, write 
the two-level linear model as

	 yj = Zjβj + ej	 level-1 equation	 (10.2a)

where βj is a q × 1 vector of regression coef-
ficients that vary between the J classes. At 
level-2, we model βj by the linear regression 
model

	 βj = Wjβ + uj	 level-2 equation	 (10.2b)

where Wj is a q × p matrix of a special struc-
ture (see below), and where uj can be inter-
preted as the q × 1 vector of level-2 residuals. 
Equations 2a and 2b are sometimes collec-
tively called the slopes-as-outcome model 
(Bryk & Raudenbush, 1992). Note that the 
regression coefficient β is identical in all 
level-2 classes. Substituting Equation 2b 
into Equation 2a yields

	 yj = ZjWjβ + Zjuj + ej,	 (10.3)
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which is a special case of the linear mixed 
model (Equation 10.1) with Xj = ZjWj.

Matrix Wj has a special structure for the 
linear multilevel model. Suppose the model 
contains q = 2 random effects (an intercept 
and a slope) and a level-2 predictor whose 
values are denoted by wj (j = 1, …, J). The 
structure of Wj is then

	 W
w

wj
j

j

=










1 0 0

0 1 0
. 	 (10.4)

The first two columns of Wj correspond 
to the random intercept and random 
slope terms, respectively. In the expres-
sion Xj = ZjWj, this part effectively copies 
Zj into Xj. Multiplication of Zj by the third 
column Wj replicates wj as nj elements in 
class j, thus forming a covariate associated 
with the main (fixed) effect in matrix Xj. 
Multiplication by the fourth column adds 
the interaction between the random slope 
and the fixed level-2 predictor, also known 
as the cross-level interaction term. In appli-
cations where this term is not needed, one 
may simply drop the fourth column of Wj. 
It is easy to extend Equation 10.4 to multi-
ple level-2 predictors by padding additional 
columns with the same structure. Note 
that Equation 10.2 implicitly assumes that 
all level-1 variables are treated as random 
effects. It is straightforward to exclude the 
random part for the lth (l = 1, …, q) variable 
by requiring u1l = … = ujl = … = uJl = 0, or 
equivalently, by setting the corresponding 
diagonal element in Ω to zero. In the sequel, 
we assume that all level-1 data are collected 
into Zj.

Equation 10.1 separates the fixed and ran-
dom effects, but the same covariates may 
appear in both Xj and Zj. This complicates 
imputation of those covariates. To make 

matters more complex, Xj can also contain 
interactions between covariates at level 1 
and level 2. Equation 10.2 distinguishes the 
level-1 from the level-2 predictors. There is 
no overlap between Wj and Zj. This is a con-
venient parameterization if we are trying 
to understand the missing data processes 
that operate on different levels of the data 
collection.

10.3 �C lassification of 
Multilevel Incomplete 
Data Problems

This section provides a typology of incom-
plete data problems that can appear in a 
multilevel context. There are five major fac-
tors to consider: the role of the variables in 
the model, the pattern of the missingness, 
the missing data mechanism, the distribu-
tion of the variable, the design of the study. 
In order to be able to provide an adequate 
treatment to the missing data we need 
answers on the following questions:

Role: In which variables do the miss-•	
ing data occur?
Pattern: Do the missing data form a •	
pattern in the data?
Mechanism: How is the probability to •	
be missing related to the data?
Scale: What is the scale of the incom-•	
plete variables?
Design: What is the design of the •	
study (e.g., random, clustered, 
longitudinal)?

This section classifies problems in incom-
plete multilevel data into five subproblems: 
role, pattern, mechanism, scale, and design. 
We briefly indicate the major difficulties 
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and consequences of missing data in each 
case. The typology can be used to charac-
terize particular data analytic problems. In 
addition, the typology provides insight into 
what fields are well covered in the literature 
and those less covered. Different combina-
tions of the five factors correspond to differ-
ent analytic situations and may thus require 
specialized approaches.

10.3.1 �R ole of the Variable 
In the Model

Missing data can occur in yj, Zj, Wj, and 
j. The consequences of incompleteness of 
a variable depend on the role the variable 
plays in the multilevel model.

10.3.1.1  Missing Data in yj

Many classical statistical techniques for 
experimental designs require balanced data 
with equal group sizes (Cochran & Cox, 
1957). The experimental factors are under 
control of the experimenter and the miss-
ing data typically occur in yj. The problem 
of missing data in yj is that they may destroy 
the balance present in the original design. 
In the days of Fisher, this used to be a major 
setback since the calculations required for 
the analysis of unbalanced data are much 
more demanding than those for the bal-
anced case. In a similar vein, the classic 
approach to analyzing change relies on 
repeated measurements of the same subject 
on a fixed number of occasions (de Leeuw 
& Meijer, 2008). Missing data that occur 
in repeated measures result in incomplete-
ness of the subject’s response vector, which 
leads to severe complications in MANOVA. 
Many techniques have been proposed to cir-
cumvent and deal with problems of missing 
outcomes in experiments (Dodge, 1985).

The advent of multilevel modeling opened 
up new ways of analyzing data with missing 
yj. Modern likelihood-based methods have 
been developed in which missing data in yj 
no longer present a problem. Snijders and 
Bosker (1999, p. 52) write that the model 
can be applied “even if some groups have 
sample size nj = 1, as long as other groups 
have greater sizes.” We add that this state-
ment will only go as far as the assumptions 
of the model are met: data in yj are missing 
at random and the model is correctly speci-
fied. Section 10.4.5 discusses the likelihood-
based approach in more detail.

The problem of missing data in yj has 
received vast attention. There is an exten-
sive literature, which often concentrates 
on the longitudinal case (Daniels  & 
Hogan, 2008; Molenberghs & Verbeke, 
2005; Verbeke & Molenberghs, 2000). 
For more details, see the overview of the 
state-of-the-art including direct likeli-
hood approaches, Generalized Estimating 
Equations (GEE), Weighted GEE, and oth-
ers (Beunckens, Molenberghs, Thijs, & 
Verbeke, 2007).

10.3.1.2  Missing Data in Zj

Missing data can also occur in the level-1 
predictors Zj. In applications where pupils 
are nested within classes, missing data in 
Zj occur at the child level: age of the pupil, 
occupational status of the father, ethnic 
background, and so on. In longitudinal 
applications where time is nested within 
persons, missing data in Zj may occur on 
time-varying covariates. Examples include 
breast-feeding status and stage of pubertal 
development at a particular age.

The effect of missing data in Zj is that 
the estimators become undefined. The 
usual solution is simply to remove the 
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incomplete cases before analysis. This is 
not only wasteful, but may also bias esti-
mates of the regression weights (Little, 
1992). Some authors suggest that data 
missing at the micro units may not need to 
be replaced or imputed if the data are to be 
aggregated and the analysis is to be done 
at the macro level (McKnight, McKnight, 
Sidani, & Figueredo, 2007). While easy to 
perform, this advice is only sound under 
the restrictive assumption that the process 
that caused the missing data is missing 
completely at random.

Several solutions for handling missing 
data in Zj have been offered. Goldstein pro-
posed to extend the multilevel model with 
one extra level that contains a dummy vari-
able for each incomplete variable (1987). 
Petrin implemented this suggestion, and 
noted that the procedure is “susceptible to 
producing biased parameters estimates.” 
The procedure requires reorganization of 
the data and, according to Petrin, is “very 
tedious” (2006). Schafer noted that miss-
ing values in Zj are problematic since they 
require a probability model on the covari-
ates (1997). Handling this in general “would 
require us to incorporate random effects 
into the imputation model, which remains 
an open problem.” Longford observed that 
drawing imputations using random effects 
models is hard because the relevant param-
eter distributions depend on the within–
between classes variance ratio, which is 
often not estimated with high precision 
(Longford, 2005).

Schafer and Yucel (2002) suggested 
transferring incomplete variables in Zj to 
the other side of the equation, and impute 
the missing data in the multivariate out-
comes under a joint multivariate model 
(Yucel, 2008). This approach has been 
implemented in their PAN package. There 

is a macro for MLwiN that implements this 
approach (Carpenter & Goldstein, 2004). 
Multiple imputation of multilevel data 
is possible using the chained equations 
approach (Jacobusse, 2005). This method 
is implemented in the WinMICE computer 
program, which can be downloaded from 
www.multiple-imputation.com.  Similar 
research was done by Yucel, Schenker, 
and Raghunathan (2006), who called their 
approach SHRIMP. Longford (2008) pro-
posed an EM-algorithm to estimate the 
parameters in the multilevel model in case 
of missing Zj. In its generality, this approach 
requires substantial programming effort 
and, according to Longford, would only be 
practical if few missing data patterns arise.

10.3.1.3  Missing Data in Wj

The problem of missing data in Wj has 
received little attention. Missing data in the 
level-2 predictors Wj occur if, for example, 
it is not known whether a school is public 
or private. In a longitudinal setting, missing 
data in fixed person characteristics, like sex 
or education, lead to incomplete Wj.

Missing entries in Wj complicate the esti-
mation of group-level effects. The typical 
fix is to delete all records in the class. For 
example, suppose that the model contains 
the professional qualification of the teacher 
(e.g., teacher school, university, PhD). If 
the qualification is missing, the data of all 
pupils in the class are removed before the 
analysis. Again, this strategy is not only 
wasteful, but may also lead to selection 
effects at level 2.

Some have studied the use of (inappro-
priate) flat-file imputation methods that 
ignore the hierarchical group structure in 
multilevel data. Standard errors are under-
estimated, leading to confidence intervals 
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that are too short (Cheung, 2007; Gibson & 
Olejnik, 2003; Roudsari, Field, & Caetano, 
2008). Zhang (2005) reports however that 
flat multiple imputation worked well with 
multilevel data, and advises that future 
researchers should feel confident applying 
the procedure with a missing data level up 
to 30%. There is no consensus yet on this 
issue, and some more work is needed to 
clear things up.

Imputation methods for level-2 predic-
tors should assign the same imputed value 
to all members within the same class. Some 
authors suggest creating two data sets, one 
with only individual-level data, and one with 
group-level data, and do separate imputa-
tions within each data set while using the 
results from one in the other (Gelman & 
Hill, 2007; Petrin, 2006). Note that the steps 
can also be iterated.

10.3.1.4  Missing Data in j

It is also possible that the group identi-
fication is unknown. For example, some 
pupils may have failed to fill in their class 
number on the form. The result is that the 
investigator cannot allocate the pupil to a 
group. Though one might envisage appli-
cations of imputing class memberships, 
we will not deal with the case of missing 
data in j. For now, the only action one 
could do is to eliminate the record from 
the data.

10.3.2 M issing Data Pattern

For both theoretical and practical reasons, it 
is useful to distinguish between monotone 
and nonmonotone missing data patterns, 
and between univariate and multivariate 
missing data patterns. A pattern is mono-
tone if the variables can be ordered such 

that, for each person, all earlier variables 
are observed if all subsequent variables are 
observed. Monotone patterns often occur as 
a result of drop out in a longitudinal study. 
It is often useful to sort variables and cases 
to approach a monotone pattern.

Little and Rubin (2002) graphically dem-
onstrate the univariate/multivariate and 
the monotone/nonmonotone distinctions 
for flat files. Things become more com-
plicated in the context of multilevel data. 
Figure  10.1 demonstrates several possibili-
ties. Figure 10.1a is the case where all miss-
ing data are confined to the outcome yj, and 
where a person is lost once dropped out. 
Figure 101b depicts the situation where the 
person only misses one or more visits, but 
does not completely drop out. This leads 
to missing data that are intermittent. Note 
that the difference between 10.1a and 10.1b 
only makes sense for longitudinal data (i.e., 
when Zj can be interpreted as time).

If Zj attains identical values in each group 
(i.e., if the data are repeated measures at fixed 
time points), we can reorder the file into a 
broad matrix where each cluster occupies 
one record, and where a set of columns rep-
resent the time points. It is then easy to see 
that drop out leads to a monotone missing 
data problem, whereas intermittent missing 
data result in a nonmonotone pattern. The 
practical usefulness of a monotone pattern 
is that it opens up the possibility to solve the 
missing data problem by a sequence of sim-
ple steps without the need to iterate (Little 
& Rubin, 2002).

Figure  10.1c represents the situation 
where there are also missing data in level-1 
predictors Zj. For example, Zj could contain 
body height and yj could be body weight. 
Multilevel multivariate missing data usually 
correspond to a missing data pattern that 
is nonmonotone. Figure  10.1d depicts the 
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one most general situation where missing 
data occur in level-2 predictors Wj, level-1 
predictors Zj and level-1 outcomes yj. Note 
that all level-1 units have missing level-2 
predictors if Wj is missing. This is perhaps 
the most complex case, but also a case that 
occurs frequently.

10.3.3 M issing Data Mechanism

The process that created the missing data 
influences the way the data should be ana-
lyzed. Except in artificial cases, the precise 
form of the missingness process is generally 
unknown, so one has to make assumptions. 
If the probability to be missing is inde-
pendent of both unobserved and observed 

data, then the data are said to be Missing 
Completely at Random (MCAR; Rubin, 
1976). If, conditional on the observed 
data, the probability to be missing does 
not depend on the unobserved data, then 
the data are said to be Missing at Random 
(MAR). Note that MCAR is a special case of 
MAR. A mechanism that is neither MCAR 
nor MAR is called Missing Not at Random 
(MNAR).

It is possible to test between MCAR and 
MAR. For data missing due to drop out, 
Diggle (1988) proposed a test for the hypoth-
esis that the probability a unit drops out at 
time tj is independent of the measurement 
on that unit up to time tj−1. An alternative 
for general monotone data was developed by 

j y z w j
(b)(a)

(d)(c)

y z w
1 1

1 1

1 1

2 2

2 2

3 3

3 3

3 3

3 3
Univariate, drop out Univariate, intermittent

j y z w j y z w

1 1

1 1

1 1

2 2

2 2

3 3

3 3

3 3

3 3
Multivariate, level 1 Multivariate, mixed

level 1 and 2

Figure 10.1
Four typical missing data patterns in the multilevel 
data with two levels and three groups. The grey parts 
represent observed data, whereas the transparent 
cells indicate the missing data.
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Little (1988). It is not possible to test MNAR 
versus MAR since the data needed for such 
a test are, by definition, missing.

A closely related concept is ignorability 
of the missing data process. If the data are 
MAR and if the parameters of the complete 
data model are independent of those of the 
missing data mechanism, then likelihood 
inference of the observed data can ignore 
the missing data process. Suppose that the 
random variable R = 1 indicates that Y is 
observed, whereas R = 0 for missing Y. The 
information about Y that is present in X, 
Z, and R is summarized by the conditional 
distribution P(Y | X,  Z,  R). Cases with 
missing Y; that is, with R = 0, do not pro-
vide any information about P(Y | X,  Z,  R), 
and so we have only information to fit mod-
els for P(Y | X, Z, R = 1). However, we need 
the distribution P(Y | X,  Z, R = 0) to model 
the missing Ys. Assuming that the missing 
data mechanism is ignorable corresponds to 
equating P(Y | X, Z, R = 0) = P(Y | X, Z, R = 1) 
(Rubin, 1987).

The assumption of ignorability generally 
provides a natural starting point for analysis. 
If the assumption is clearly not reasonable 
(e.g., when data are censored), we may use 
other forms for P(Y |X, Z, R = 0). The fact that 
R = 0 allows for the possibility that the P(Y |X, 
Z, R = 1) ≠ P(Y |X, Z, R = 0; cf. Rubin, 1987, 
p. 205), so nonignorable nonresponse can 
be modeled by specifying P(Y |X, Z, R = 0) 
different from P(Y |X, Z, R = 1). The differ-
ence can be just a simple shift in the mean of 
the distribution (Van Buuren, Boshuizen, & 
Knook, 1999), but it may also consist of highly 
customized (selection, pattern mixture, 
shared parameter) models that mimic the 
nonresponse mechanism (Daniels & Hogan, 
2008; Demirtas & Schafer, 2003; Little & 
Rubin, 2002). Daniels and Hogan (2008) sug-
gest viewing the effects of alternative missing 

data assumption in terms of departures from 
MAR. A key requirement is that the assumed 
nonignorable model should be more reason-
able and sensible than the model implied by 
the assumption of ignorability.

A somewhat different strategy to bypass 
the assumption of ignorability is to construct 
double robust estimators. An estimator is 
double robust if it remains consistent when 
either (but not necessarily both) a model 
for the missing data mechanism or a model 
for the distribution of the complete data is 
correctly specified (Bang & Robins, 2005; 
Scharfstein, Rotnitzky, & Robins, 1999). The 
approach uses inverse probability weigh
ting, and its pros and cons with respect to 
multiple imputation have been the subject of 
debate (Kang & Schafer, 2007). The literature 
is now moving toward using the best of both 
worlds from inverse probability weight-
ing and multiple imputation (Beunckens, 
Sotto,  & Molenberghs, 2008; Carpenter, 
Kenward, & Vansteelandt, 2006).

10.3.4 S cale

Data can be measured on many types of 
scales: continuous (but are usually rounded 
to whole units), ordered categorical, unor-
dered categorical, binary, semicontinuous 
(i.e., a mixture of a binary and a continuous 
variable), counts, censored (with known 
or unknown censoring points), truncated 
(with known or unknown truncation 
points), below the detection limit, brack-
eted response (e.g., obtained by a format 
that zooms in by posing successively more 
detailed questions), constrained by other 
data (e.g., a sum score or interaction term), 
and so on. In addition the data can take 
almost any distribution, including bimodal, 
skewed, and kurtotic shapes. Moreover, the 
relations can be highly nonlinear.
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All these factors can occur in conjunction 
with multilevel data. The most advanced 
methods for dealing with missing data in 
a multilevel context invariably assume that 
variables follow a multivariate normal dis-
tribution. Though multiple imputation is 
generally robust to violations of the mul-
tivariate normality assumption (Schafer, 
1997), advances could be made that respect 
the scale, the distribution, and nonlinear 
relations of the data.

10.3.5 S tudy Design

The study design determines the class of 
incomplete data models that can be usefully 
applied to the data. Popular designs that 
lead to hierarchical data include:

Multistage sample: A design where sam-
pling progresses in a number of stages, for 
example, first sample from school, then 
sample classes within schools, and then 
sample pupils within classes. Missing data 
can occur at any stage of sampling, but 
usually only missing data in the level-1 
outcomes are explicitly considered as miss-
ing data. This is a common design in the 
social sciences.

Longitudinal study with fixed occasions: A 
design where data are collected according 
to a number of planned visits. Missing data 
may result from missed visits (intermittent 
missing data) or panel attrition (drop out). 
This design is common in the biomedical 
field.

Longitudinal study, varying occasions: A 
design where the data are ordered accord-
ing to time and nested within individuals. 
There is no such thing as a complete data 
vector. The number of observations per 
individuals may vary widely, can be as low 
as one, and can occur anywhere in time 
(Snijders & Bosker, 1999).

Planned missing data: A design where 
intentional missing data occur in the data 
as a consequence of the administration pro-
cedures. For example, the investigator could 
use matrix-sampling to minimize the num-
ber of questions posed to a student (Thomas 
& Gan, 1997). Missing data are an automatic 
part of the data. The percentage of missing 
data is typically large, sometimes over 75%.

File matching: A post-hoc procedure for 
combining two or more data sets measured 
on the same units. Missing data occur in 
the rows and in the columns since different 
data sources can measure different units on 
different attributes (Rässler, 2002; Rubin, 
1986).

Relational databases: A common way for 
storing information on different types of 
units (e.g., customers, products, stores) as a 
set of linked tables. Missing data result from 
partial tables and imperfect links.

10.4 �S trategies To Deal 
With Incomplete Data

10.4.1 P revention

The best solution to the missing data prob-
lem is not to have any. Consequently, the 
best strategy is to deal with unintentional 
missing data and to minimize their num-
ber. There are many factors that influence 
the response rate in social and medical 
studies: design of the study (number of vari-
ables collected, number and spacing of time 
repeated measures, follow-up time, miss-
ing data retrieval strategy), data collection 
method (mode of collection, intrusive mea-
sures, sensitivity of information collected, 
incentives, match of the interviewer and 
the respondent), measures (clarity, layout), 

RT21067_C010.indd   181 3/5/10   12:33:39 PM



182  •  Stef van Buuren

treatment burden (intensity of the interven-
tion) and data entry coding errors. For more 
information, we refer to the appropriate lit-
erature (De Leeuw, Hox, & Dillman, 2008; 
McKnight et al., 2007; Stoop, 2005). When 
carefully planned and executed, prevention 
of missing data may substantially increase 
the completeness of the information.

10.4.2 L istwise Deletion

Listwise deletion (or complete case analy-
sis) is the simplest and most popular way of 
dealing with missing data. Listwise deletion 
simply eliminates any incomplete record 
from the analysis. This is potentially a very 
wasteful strategy because valuable data are 
thrown away, especially when variables at 
the higher levels have missing data. If the 
missing data are confined to yj and if the 
missing data mechanism is MAR, then list-
wise deletion followed by the appropriate 
likelihood-based analysis is unbiased. Note 
that any covariates that predict the missing-
ness in yj should be included into the model, 
even if they are of no scientific interest to 
the researcher. For missing data in Wj or Zj, 
analysis of the complete cases will gener-
ally bias parameter estimates, even under 
MCAR (Little, 1992).

10.4.3 �L ast Observation 
Carried Forward

Last Observation Carries Forward (LOCF) 
is a technique applicable only to longitudinal 
data with drop out. The LOCF substitutes any 
missing yj after drop out by the last observa-
tion. LOCF is popular for clinical trials in 
order to be able to perform an “intention 
to treat” analysis; that is, an analysis of the 
subject as randomized, irrespective of treat-
ment compliance. However, LOCF makes 

the strong and often unrealistic assump-
tions that the response profile of the subject 
remains constant after dropping out of the 
study. The LOCF does not even work under 
MCAR (Molenberghs & Kenward, 2007). 
The magnitude and direction of this bias 
depend on the true but unknown treatment 
effects. In contrast to the widespread belief 
that LOCF leads to conservative tests, it is 
entirely possible that LOCF induces effects 
where none exist. Furthermore, because there 
is no distinction between the observed and 
the imputed data, LOCF artificially increases 
the amount of information in the data. This 
results in confidence intervals that are too 
short. All in all, the use of LOCF is discour-
aged (Lavori, 1992; Little & Yau, 1996).

10.4.4 C lass Mean Imputation

Class mean imputation replaces each miss-
ing value with the class or cluster mean. 
The method is applicable to both longitu-
dinal and nonlongitudinal data. Thus, class 
mean imputation substitutes the miss-
ing grade of a pupil by the average of the 
known grades of all pupils in the class. Just 
like LOCF, the method is unconditional on 
any other information from the pupil, so 
the method may distort relations between 
variables. Unless special methods are used 
to analyze the imputed data, the variabil-
ity may be severely underestimated (Little 
& Rubin, 2002; Schafer & Schenker, 2000). 
All in all, class mean imputation can be as 
damaging as LOCF and should generally 
not be used.

10.4.5 L ikelihood-Based Methods

Likelihood-based methods attempt to 
analyze the entire data without systemati-
cally biasing the conclusions of the subject 
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matter question. The method maximizes 
the likelihood function derived from the 
underlying model. If there are missing 
data, the likelihood function is restricted 
to the observed data only. If the missing 
data mechanism is ignorable, we may write 
the likelihood of the observed data L(θ 
|Yobs) as

	
L Y L Y Y dY( | ) ( | , )θ θobs obs mis mis= ∫ 	 (10.5)

where θ are the parameters of interest, and 
where L(θ |Yobs, Ymis) is the likelihood of the 
hypothetically complete data. The observed 
data likelihood averages over the distribu-
tion of the missing data. The Expectation-
Maximization (EM) algorithm (Dempster, 
Laird, & Rubin, 1977) maximizes L(θ|Yobs) 
by filling in the complete data sufficient 
statistics.

The linear mixed-effects model (Equation 
10.1) subsumes repeated-measures ANOVA 
and growth curve models for longitudinal 
data as special cases. The model parameters 
can be estimated efficiently via likelihood-
based methods. Laird and Ware devel-
oped an EM algorithm that can be used to 
fit the mixed linear model to longitudinal 
data (1982). Jennrich and Schluchter (1986) 
improved the speed of the method by Fisher 
scoring and Newton-Raphson. Currently, 
full-information maximum likelihood 
(FIML) is widely used to estimate the 
model parameters. Restricted maximum 
likelihood estimation (REML) is a closely 
related alternative that is less sensitive to 
small-sample bias of maximum likelihood 
(Fitzmaurice, Laird, & Ware, 2004; Verbeke 
& Molenberghs, 2000).

Software for fitting mixed models has 
the ability to handle unbalanced longi-
tudinal data, where the response data 

yj are observed at arbitrary time points 
for each subject. Missing data in yj are 
ignored by the maximum likelihood and 
REML methods along with their values 
on Wj and Zj. An advantage of the multi-
level model for the analysis of longitudi-
nal data is its ability to handle arbitrary 
time points. Missing values in Wj and Zj 
are however problematic (Longford, 2008; 
Schafer, 1997). No generally applicable 
likelihood-based approach has yet been 
developed for the case of missing values 
in Wj and Zj.

Despite the attractive properties of the 
multilevel model, likelihood-based meth-
ods should be used with some care when 
data are incomplete. First, the standard 
multilevel model implicitly assumes is that 
the missing data in the outcomes are MAR. 
This assumption can be suspect in some set-
tings. For example, patients who drop out 
early from a trial often have slopes that differ 
from patients who stay in the trial. Another 
assumption is that the individual patient 
slopes have a common normal distribu-
tion. This assumption may not be realistic if 
drop out occurs. There is an active statisti-
cal literature on the problem of estimating 
the linear mixed model under MNAR situ-
ations (Daniels & Hogan, 2008).

In the case that the MAR assumption is 
correct, the factors that govern the prob-
ability of the missing data must be included 
into the multilevel model, for example, as 
covariates. Failing to do so may introduce 
biases in the estimate of the treatment effect. 
Note that this requirement complicates the 
interpretation of the complete-data model, 
and may lead to models that are impossible 
to estimate and more complex to interpret. 
Also, missing data problems may actually 
worsen if the additional covariate(s) contain 
missing values themselves.
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Third, the missing data may increase the 
sensitivity of inferences to misspecifica-
tion of the model for the complete data. 
Incorrectly assuming a linear relation-
ship between an outcome and a covari-
ate may lead to more serious bias when 
missingness depends on the value of the 
covariate than when it does not (Little, 
2008). Zaidman-Zait and Zumbo (2005) 
performed simulations where the missing 
data mechanism depended on a person 
factor. Theoretically, including the person 
factor into the model should adequately 
deal with the missing data. However, they 
found bias in the MAR case and attribute 
that to the incorrect specification of the 
level-1 model.

Fourth, it is generally more difficult to 
derive appropriate standard errors if there 
are missing data. For example, the occur-
rence of missing data may destroy the 
block-diagonal structure of the information 
matrix in many repeated measure designs. 
Hence, the full matrix needs to be inverted, 
which can be time consuming (Little, 
2008).

In summary, likelihood-based methods 
are the preferred approach to missing data 
if all of the following hold:

	 1.	The missing data are confined to yj,
	 2.	The MAR assumption is plausible,
	 3.	Any factors in the MAR mechanism 

are included into the multilevel 
model,

	 4.	The multilevel model for the complete 
data is correctly specific.

If one or more of these conditions are not 
met, using likelihood methods for incom-
plete data could be problematic. Not much 
is yet known about the relative importance 
of each factor.

10.4.6 M ultiple Imputation

The likelihood-based approach attempts to 
solve both the missing data and complete data 
problems in one step. An alternative strategy 
is to attack the problem in two steps: First 
solve the missing data problem by imputing 
the missing data, and then fit the complete 
data analysis on the imputed data. Such a 
modular approach breaks down the model 
complexity in each step. It is well known that 
the precision of the complete-data estimates 
is overestimated if no distinction is made 
between observed and imputed data. The 
solution to this problem is to use multiple 
imputation (MI), which can produce cor-
rect estimates of the sampling variance of the 
estimates of interest (Rubin, 1987, 1996).

10.5 � Imputation of 
Univariate Missing 
Data in yj

10.5.1 �M ultilevel Imputation 
Algorithm

The linear mixed model formulation of the 
multilevel model is given by Equation 10.1: 
yj = Xjβ + Zjuj + ej with uj ~ N(0, Ω) and 
ej ~ N(0, σ2I(nj)). In order to derive imputa-
tions under this model, we adopt a Bayesian 
approach. For complete data, the distribu-
tion of the parameters can be simulated by 
Markov chain Monte Carlo (MCMC) meth-
ods (Schafer & Yucel, 2002; Zeger & Karim, 
1991). The main steps are:

	 1. Sample β from p(β | y, u, σ2)
	 2. Sample uj from p(u | y, β, Ω, σ2)
	 3. Sample Ω from p(Ω | u)	 (10.6)
	 4. Sample σ2 from p(σ2 | y, β, u)
	 5. Repeat step 1-4 until convergence
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The rate of convergence of this Gibbs sam-
pler depends on the magnitude of the corre-
lation between the steps. Many variations on 
the above scheme have been proposed (Chib 
& Carlin, 1999; Cowles, 2002; Gelman, 
Carlin, Stern, & Rubin, 2004; Gelman, Van 
Dyk, Huang, & Boscardin, 2008).

Let us first consider the case where y 
contains missing data. Let yobs represent 
the observed data and let ymis be the miss-
ing data, so that y = [yobs, ymis]. If the MAR 
assumption is plausible, we can replace 
y by yobs in the above steps, and simulate 
the parameter distribution using only the 
complete records. At the end, we append an 
additional step to generate imputations for 
the missing data:

	 6. �Sample ymis from p(ymis | yobs, 
β, u, Ω, σ2).	 (10.7)

Under model Equation 10.1, we calculate 
imputations by drawing

	 ej
* ~ N(0, σ2)	 (10.8)

	 yj
* = Xjβ + Zjuj + ej

*	 (10.9)

where all parameters that appear on the 
right are replaced by their values drawn 
under the Gibbs sampler.

The classic algorithm outlined above will 
not produce good imputations for incom-
plete predictors. A considerable advance 
in imputation quality is possible by using 
a slightly more general version of model 
Equation 10.1, where the within-cluster var-
iance σj

2 is allowed to vary over the clusters. 
Kasim and Raudenbush (1998) proposed 
a Gibbs sampler for this heterogeneous 
model. They specify

	 p j( | , )~ /σ σ φ
σ χ

φ
φ2

0
2 0

2
1
2

	 (10.10)

where σ0
2 and ϕ are hyperparameters. The 

hyperparameter σ0
2 describes the location 

of prior belief about residual variance σj
2 in 

the conjugate prior distribution for σj
2. The 

hyperparameter ϕ is a measure of variabil-
ity of the variances σj

2. Both σ0
2 and ϕ are 

also updated within the Gibbs sampler. The 
algorithm was implemented in R by Roel 
de Jong, where σj

2 = 1 and ϕ = 1 are used 
as starting parameters. Below, we will refer 
to this method as multilevel imputation 
(ML).

10.5.2 S imulation Study

Data with a multilevel structure were gen-
erated according to the model yij = 0.5 
zij + uj + eij with ej ~ N(0, σ2) and uj ~ N(0, 
Ω). This model is a special case of Equation 
10.1 and 10.2), where Xj = Zj = (1, zij) with 
i = 1,…,nj is the nj × 2 data matrix of class 
j, where Ω = diag(ω2,0), where β = (0,0.5)T 
is a 2 × 1 vector of fixed parameters, and 
where Wj is the identity matrix. We varied 
the variance parameters (σ2, ω2) in pairs as 
{(0.75,0.00), (0.65,0.10), (0.45,0.30), (0.25, 
0.50)}. Since variable zij was drawn as zij ~ 
N(0,1), the intraclass correlation coefficient 
(ICC) under the stated model equals ω2, so 
the ICC effectively varies between 0.0 and 
0.5. We fixed the total number of respond-
ents to 1,200. The number of classes was 
chosen 12, 24, and 60, yielding 100, 50, 
and 20 respondents per class, respectively.

Two missing data mechanisms were spec-
ified: Y and Z. Mechanism Y generates 50% 
missing data in yij under MAR. For values 
of zij < 0, the nonresponse probability in yij 
is 10%. For zij ≥ 0, this probability is 90%. 
Vice versa, mechanism Z generates 50% 
missing data in zij under MAR given yij. For 
values of yij < 0, the nonresponse probability 
is 10%. For yij ≥ 0, the probability is 90%.
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The following methods for handling the 
missing data were used:

Complete Case Analysis (CC). This •	
method removes any incomplete 
records before analysis, also known as 
listwise deletion.
Multiple Imputation Flat File (FF). •	
This method multiple imputes miss-
ing data while ignoring any clustering 
structure in the data by standard lin-
ear regression imputation.
Multiple Imputation Separate Classes •	
(SC). This method multiple imputes 
missing data by treating the cluster 
allocation as a fixed factor, so that dif-
ferences in intercepts between classes 
are modeled.
Multiple Imputation Multilevel Impu•	
tation (ML). This method applies the 
Gibbs sampler as described above to 
generate multiple imputations from 
posterior of the missing data given the 
observed data.

The number of multiple imputation was 
fixed to 5. Parameter estimates are pooled 
using Rubin’s rules (Rubin, 1987; Rubin, 
1996). The complete-data model was fit-
ted by the lmer() function in R package 
lme4 (Pinheiro & Bates, 2000).

10.5.3 R esults

Table 10.1 contains results of the simula-
tions. When missing data are confined to 
yij, then CC is unbiased for both the fixed 
and random parameters, as expected. 
Method FF is unbiased in the fixed param-
eters, but severely biased in the random 
parameters for clustered data (i.e., when 
ω2 > 0). Method SC produces unbiased 
estimates of both the fixed and random 

parameters. Note that this is related to 
the fact that the model that generated the 
data included only random intercepts and 
no random slopes. Also, method ML is 
unbiased in both the fixed and random 
parameters.

If missing data occur in zij, the results are 
drastically different. The estimates under 
CC are severely biased, both for the fixed 
and random parameters. Thus even under 
MAR, the standard practice of eliminating 
incomplete records can produce estimates 
that are plainly wrong. Of the three impu-
tation methods, SC and ML yield estimates 
that are close to population values, FF is 
generally less successful. Method SC had 
computational problems for small clus-
ter sizes (nj = 20) because the number of 
observations in the cluster that remain after 
missing data were created could become 
too low (≤3). The FF and ML methods are 
insensitive to this problem since they com-
bine information across clusters.

Table 10.2 contains estimates of the cov-
erage of the 95% confidence interval for the 
fixed parameters. The number of replications 
used is equal to 100, so the simulation stan-
dard error is √(0.95(1 − 0.95)/100) = 2.2%. 
For missing data in yij, CC has appropriate 
coverage. However, coverage for missing 
data in zij is dismal, so statistical infer-
ences are unwarranted under incomplete 
zij. The FF is generally not well calibrated, 
and may achieve both under- or overcover-
age depending on the amount of clustering. 
The SC has appropriate coverage of β0, but 
coverage is suboptimal for βx. The ML has 
appropriate coverage for larger cluster sizes 
for both β0 and βx. Coverage for small clus-
ter sizes is however less than ideal, though 
still reasonable.

This section addressed the properties of 
four methods for dealing with univariate 
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missing data within a multilevel context. 
The CC method is easy and works well under 
MAR when missing data are restricted to 
yij. However, the performance CC with zij 
missing at random is bad. We therefore rec-
ommend against CC if many zij are missing. 
An alternative is to apply multiple imputa-
tion. Three such methods were studied. The 
overall best performance was obtained by 
the ML Gibbs sampling method.

10.6 �M ultivariate Missing 
Data in yj and zj

10.6.1 G eneral Approach

Missing data may also occur in yij and zij 
simultaneously. The present section deals 
with the case where both yij and zij are incom-
plete. There are two general approaches to 
impute multivariate missing data: Joint 

TABLE 10.2

Coverage (in Percentage) of the True Values by the 95% Confidence Interval for Fixed 
Parameter Estimates Under Four Methods for Treating Missing Data in Y or Z, Respectively

J nj β0 CC FF SC ML βx CC FF SC ML

Y
A 12 100 95 96 72 90 90 95 96 73 72 90
B 12 100 95 89 69 96 87 95 96 82 76 91
C 12 100 95 94 71 94 91 95 97 98 70 93
D 12 100 95 94 68 94 97 95 94 100 78 91

E 24 50 95 95 71 91 87 95 97 66 68 88
F 24 50 95 96 73 90 89 95 97 76 63 87
G 24 50 95 92 63 93 88 95 96 90 66 94
H 24 50 95 91 73 94 95 95 96 95 72 87

I 60 20 95 98 66 92 84 95 98 73 69 90
J 60 20 95 99 64 88 88 95 93 71 68 89
K 60 20 95 97 67 88 98 95 97 79 76 86
L 60 20 95 92 66 96 88 95 97 89 73 87
Z
A 12 100 95 0 88 92 95 95 0 84 84 93
B 12 100 95 0 84 94 87 95 2 83 85 94
C 12 100 95 25 82 90 94 95 23 49 86 94
D 12 100 95 75 91 91 92 95 39 5 87 95

E 24 50 95 0 88 93 90 95 0 94 80 87
F 24 50 95 0 88 99 95 95 1 78 84 87
G 24 50 95 5 96 96 95 95 11 25 94 91
H 24 50 95 54 91 94 94 95 29 1 94 94

I 60 20 95 0 91 92 89 95 0 77 78 85
J 60 20 95 0 87 95 98 95 1 83 86 83
K 60 20 95 0 90 # 96 95 2 35 # 79
L 60 20 95 17 88 # 91 95 16 1 # 85

Notes:	 CC = complete case analysis, FF = MI flat file, SC = MI separate group, ML = MI multilevel.
# solution could not be calculated due to almost empty classes.
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Modeling (JM) and Fully Conditional 
Specification (FCS).

Joint modeling partitions the observa-
tions into groups of identical missing data 
patterns, and imputes the missing entries 
within each pattern according to a joint 
model for all variables. The first such model 
was developed for the multivariate normal 
model (Rubin & Schafer, 1990). Schafer 
(1997) extended this line and developed 
sophisticated JM methods for generating 
multivariate imputations under the multi-
variate normal, the log-linear, and the gen-
eral location model. This work was extended 
to include multilevel models (Schafer & 
Yucel, 2002; Yucel, 2008).

The fully conditional specification 
imputes data on a variable-by-variable basis 
by specifying an imputation model per 
variable. The FCS is an attempt to specify 
the full multivariate distribution of the 
variables by a set of conditional densities 
for each incomplete variable. This set of 
densities is used to impute each variable by 
iteration, where we start from simple initial 
guesses. Though convergence can only be 
proved in some special cases, the method 
has been found to work well in practice 
(Raghunathan, Lepkowski, van Hoewyk, & 
Solenberger, 2001; Van Buuren et al., 1999; 
Van Buuren, Brand, Groothuis-Oudshoorn, 
& Rubin, 2006). The R mice package (Van 
Buuren & Groothuis-Oudshoorn, 2000) 
enjoys a growing popularity. Van Buuren 
(2007) provides an overview of the similari-
ties and contrasts of JM and FCS.

10.6.2 S imulation Study

Using the same complete-data model as 
before, we created missing data in both 
xij and yij by applying mechanisms Y and 

Z each to a random split of the data. For 
missing zij the procedure is identical to that 
given before. For missing yij, the procedure 
is reversed. For values of zij < 0, the nonre-
sponse probability in yij is 90%. For zij ≥ 0, 
this probability is 10%. Thus, many high zij 
and many low yij will be missing.

We created five multiple imputed data 
sets with mice using the three imputation 
methods. The number of iterations in mice 
was fixed to 20.

10.6.3 R esults

Table 10.3 contains the parameter estimates 
averaged over 100 simulations. Complete 
case (CC) analysis severely biases the esti-
mates of the intercept term β0 and the 
within-group variance σ2, especially when 
the clustering is weak. Methods FF and SC 
have a somewhat better performance for the 
fixed effects, and behave differently for the 
variance estimates. The best overall method 
is ML, but note that ML is not yet ideal 
since β0 is biased slightly upward while βx 
is biased slightly downward. No systematic 
bias appears to be present in the variance 
estimates, so ML seems to recover the mul-
tilevel structure present in the original data 
quite well.

Table  10.4 contains the accompanying 
coverage percentages. The best method is 
ML, but none of the methods is really sat-
isfactory. Trouble cases include A, E, and 
I, where ω2  = 0. The Gibbs sampler can get 
stuck if there is no between-cluster varia-
tion (Gelman et al., 2008), so this might be a 
reason for the low coverage. It also appears 
to be difficult to get appropriate coverage 
for small cluster sizes.

The simulations suggest that FCS is a 
promising option for imputing incomplete 
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multilevel data. The FCS used in conjunc-
tion with multiple multilevel imputation is 
a considerable improvement over standard 
practice. The methodology is not yet ideal 
however, and further optimization and tun-
ing is needed.

10.7 C onclusions

Multilevel data can be missing at differ-
ent levels. Variables in which missing data 
occur can have different roles in the analy-
sis. The optimal way to deal with missing 
data depends on both the level and the role 
of the variable in the analysis.

Multilevel models are often presented 
in the form of the linear mixed model 
Equation 10.1. This formulation complicates 
conceptualization of the missing data prob-
lem because the same variable can appear at 

different places. It is useful to write the mul-
tilevel model as a slopes-as-outcomes model 
Equation 10.2, which clearly separates the 
variables at the different levels. Section 10.2 
describes how Equations 10.1 and 10.2 are 
related.

Missing data can occur in yj (level-1 out-
comes), Zj (level-1 predictors) are Wj (level-2 
predictors) and j (class variable). The prob-
lem of missing data in yj has received con-
siderable attention. The linear multilevel 
model provides an efficient solution to this 
problem if the data are missing at random 
and if the model fits the data. There is a large 
literature on what can be done if the MAR 
assumption is suspect, or when models for 
other outcome distributions are needed. By 
comparison, the problem of missing data in 
Zj, Wj and j received only scant attention. 
The usual solution is to remove any incom-
plete records, which is wasteful and could 
bias the estimates of interest. Several fixes 

TABLE 10.4

Coverage (in Percentage) of the True Values by the 95% Confidence Interval for Fixed 
Parameter Estimates Under Four Methods for Treating Missing Data in Both Y and X

J nj β0 CC FF SC ML βx CC FF SC ML

YZ
A 12 100 95 0 5 42 37 95 46 29 27 85
B 12 100 95 2 18 64 81 95 55 23 22 77
C 12 100 95 45 25 83 89 95 71 32 26 76
D 12 100 95 83 38 85 90 95 88 29 17 82

E 24 50 95 0 6 39 37 95 48 28 30 64
F 24 50 95 0 9 56 79 95 56 30 27 67
G 24 50 95 16 21 76 84 95 75 25 15 55
H 24 50 95 69 28 81 87 95 82 28 13 72

I 60 20 95 0 1 # 34 95 42 19 # 55
J 60 20 95 0 13 # 50 95 53 24 # 57
K 60 20 95 1 12 # 73 95 52 22 # 42
L 60 20 95 28 17 # 82 95 76 27 # 43

Notes:	 CC = complete case analysis, FF = MI flat file, SC = MI separate group, ML = MI multilevel.
# solution could not be calculated due to almost empty classes.
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have been proposed, but none of these have 
yet gained wide use.

Other questions that need to be addressed 
are less particular to the multilevel setting: 
the missing data pattern, the missing data 
mechanism, the measurement scales used, 
and the study design. A successful attack on 
a given incomplete data problem depends 
on our capability to address these factors 
for the application at hand.

Section 10.3 outlines six strategies. Quick 
fixes like listwise deletion, last observation 
carried forward and class mean imputa-
tion will only work in a limited set of cir-
cumstances and are generally discouraged. 
Prevention, likelihood-based methods, and 
multiple imputation are methodologically 
sound approaches based on explicit assump-
tions about the missing data process.

Multiple imputation is a general statisti-
cal technique for handling incomplete data 
problems. Some work on MI in multilevel 
setting has been done, but many open issues 
remain. We performed a simulation study 
with missing data in yij or zij, and compared 
complete case analysis with three MI tech-
niques: flat file (FF) imputation that ignores 
the multilevel structure, separate clusters 
(SC) imputation that includes a group factor, 
and multilevel (ML) imputation by means of 
the Gibbs sampler. Complete case analysis 
was found to be a bad strategy with missing 
data in zij. The best imputation technique 
was ML. A second simulation addressed the 
question of how the methods behave when 
missing data occur simultaneously in yij or 
zij. Though its performance is not yet ideal, 
multiple imputation by ML within the FCS 
framework considerably improves upon 
standard practice.

Simulation is not reality. The missing data 
mechanisms we have used in the simulation 

have a considerable amount of miss-
ing information, and are probably more 
extreme than those encountered in prac-
tice. The simulations are still useful though. 
Differences between methods in absolute 
terms may be smaller in practice, but the 
best methods will continue to dominate 
others in less extreme situations. All other 
things being equal, we therefore prefer to 
use imputation methods that performs best 
“asymptotically” in extreme situations.

Since ML requires more work than 
complete case analysis it would be useful 
to have clear-cut rules that say when doing 
ML is not worth the trouble. No such rules 
have yet been devised. This would be a use-
ful area of further research. Another area 
for research would be to further optimize 
and tune the ML imputation method to 
the multivariate missing data problem. 
For example, taking alternative distribu-
tions for within-cluster residual variance 
σj

2 could improve performance. The cur-
rent implementation of the method uses a 
full Gibbs sampler. Though the algorithm 
is robust, it is not particularly fast. Adding 
parameter expansion (Gelman et al., 2008) 
could be useful to prevent the Gibbs sam-
pler from getting stuck at the border of the 
parameter space at ω2 = 0. Computations 
could be speeded up, for example by 
obtaining marginal maximum likelihood 
estimates of β and Ω using numerical 
integration via Gauss-Hermite (Pinheiro 
& Bates, 2000). Extensions toward higher 
level models are also possible (Yucel, 
2008). Finally, we can classify missing data 
problems by combining the answers on 
the five questions posed in Section 10.3. 
Classification of the combinations opens 
up a whole research agenda with many 
white spots.

RT21067_C010.indd   193 3/5/10   12:33:42 PM



194  •  Stef van Buuren

References

Bang, K., & Robins, J. M. (2005). Doubly robust 
estimation in missing data and causal inference 
models. Biometrics, 61, 962–972.

Beunckens, C., Molenberghs, G., Thijs, H., & 
Verbeke, G. (2007). Incomplete hierarchical 
data. Statistical Methods in Medical Research, 
16, 457–492.

Beunckens, C., Sotto, C., & Molenberghs, G. (2008). 
A simulation study comparing weighted esti-
mating equations with multiple imputation 
based estimating equations for longitudinal 
binary data. Computational Statistics and Data 
Analysis, 52, 1533–1548.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical 
linear models. Newbury Park, CA: Sage 
Publications, Inc.

Carpenter, J., & Goldstein, H. (2004). Multiple impu-
tation in MLwiN. MLwin newsletter [On-line]. 
Available: http://www.lshtm.ac.uk/msu/missing 
data/papers/newsletterdec04.pdf

Carpenter, J., Kenward, M. G., & Vansteelandt, S. 
(2006). A comparison of multiple imputation 
and doubly robust estimation for analyses with 
missing data. Journal of the Royal Statistical 
Society. Series A: Statistics in Society, 169, 
571–584.

Cheung, M. W. L. (2007). Comparison of methods of 
handling missing time-invariant covariates in 
latent growth models under the assumption of 
missing completely at random. Organizational 
Research Methods, 10, 609–634.

Chib, S., & Carlin, B. P. (1999). On MCMC sampling 
in hierarchical longitudinal models. Statistics 
and Computing, 9, 26.

Cochran, W. G., & Cox, G. M. (1957). Experimental 
designs. New York, NY: John Wiley & Sons, Ltd.

Cowles, M. K. (2002). MCMC sampler convergence 
rates for hierarchical normal linear models: A 
simulation approach. Statistics and Computing, 
12, 377–389.

Daniels, M. J., & Hogan, J. W. (2008). Missing data 
in longitudinal studies. Strategies for Bayesian 
modeling and sensitivity analysis. Boca Raton, 
FL: Chapman & Hall/CRC.

De Leeuw, E. D., Hox, J. J., & Dillman, D. A. (2008). 
International handbook of survey methodology. 
New York, NY: Lawrence Erlbaum Associates.

de Leeuw, J., & Meijer, E. (2008). Handbook of multi-
level analysis. New York, NY: Springer.

Demirtas, H., & Schafer, J. L. (2003). On the perfor-
mance of random-coefficient pattern-mixture 
models for non-ignorable drop-out. Statistics in 
Medicine, 22, 2553–2575.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). 
Maximum likelihood estimation from incom-
plete data via the EM algorithm (with discus-
sion). Journal of the Royal Statistical Society. 
Series B: Statistical Methodology, 1–38.

Diggle, P. J. (1989). Testing for random dropouts in 
repeated measurement data. Biometrics, 45, 1258.

Dodge, Y. (1985). Analysis of experiments with missing 
data. New York, NY: John Wiley & Sons, Ltd.

Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2004). 
Applied longitudinal analysis. New York, NY: 
John Wiley & Sons, Ltd.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. 
(2004). Bayesian data analysis (2nd ed.). 
London, UK: Chapman and Hall.

Gelman, A., & Hill, J. (2007). Data analysis using 
regression and multilevel and hierarchical mod-
els. New York, NY: Cambridge University Press.

Gelman, A., Van Dyk, D. A., Huang, Z., & Boscardin,W. J. 
(2008). Using redundant parameterizations to fit 
hierarchical models. Journal of Computational 
and Graphical Statistics, 17, 95–122.

Gibson, N. M., & Olejnik, S. (2003). Treatment of 
missing data at the second level of hierarchical 
linear models. Educational and Psychological 
Measurement, 63, 204–238.

Goldstein, H. (1987). Multilevel models in educational 
and social research. London, UK: Charles Griffin 
& Company Ltd.

Jacobusse, G. W. (2005). WinMICE user’s manual 
[Computer software]. Leiden, The Netherlands: 
TNO Quality of Life.

Jennrich, R. I., & Schluchter, M. D. (1986). Unbalanced 
repeated-measures models with structured 
covariance matrices. Biometrics, 42, 805–820.

Kang, J. D. Y., & Schafer, J. L. (2007). Demystifying 
double robustness: A comparison of alterna-
tive strategies for estimating a population mean 
from incomplete data. Statistical Science, 22, 
523–539.

Kasim, R. M., & Raudenbush, S. W. (1998). Application 
of Gibbs sampling to nested variance compo-
nents models with heterogeneous within-group 
variance. Journal of Educational and Behavioral 
Statistics, 23, 93–116.

Laird, N. M., & Ware, J. H. (1982). Random-effects 
models for longitudinal data. Biometrics, 38, 
963–974.

Lavori, P. W. (1992). Clinical trials in psychiatry: 
Should protocol deviation censor patient data? 
(with discussion). Neuropsychopharmacology, 6, 
39–63.

Littell, R. C., Milliken, G. A., Stroup, W. W., & 
Wolfinger, R. D. (1996). SAS system for mixed 
models. Cary, NC: SAS Institute.

RT21067_C010.indd   194 3/5/10   12:33:42 PM



Multiple Imputation of Multilevel Data  •  195

Little, R. J. A. (1988). A test of missing completely 
at random for multivariate data with miss-
ing values. Journal of the American Statistical 
Association, 83, 1198–1202.

Little, R. J. A. (1992). Regression with missing X’s: 
A review. Journal of the American Statistical 
Association, 87, 1227–1237.

Little, R. J. A. (2008). Selection and pattern-mixture 
models. In G. M. Fitzmaurice, M. Davidian, 
G. Verbeke, & G. Molenberghs (Eds.), 
Longitudinal data analysis: A handbook of 
modern statistical methods (pp. 409–431). New 
York, NY: Wiley.

Little, R. J. A., & Rubin, D. B. (2002). Statistical 
analysis with missing data. (2nd ed.). New York: 
Wiley.

Little, R. J. A., & Yau, L. (1996). Intent-to-treat 
analysis for longitudinal studies with drop-outs. 
Biometrics, 52, 1324–1333.

Longford, N. T. (2005). Missing data and small-area 
estimation. New York, NY: Springer.

Longford, N. T. (2008). Missing data. In J. De Leeuw & 
E. Meijer (Eds.), Handbook of multilevel analysis 
(pp. 377–399). New York, NY: Springer.

McKnight, P. E., McKnight, K. M., Sidani, S., & 
Figueredo, A. J. (2007). Missing data. A gentle 
introduction. New York, NY: Guilford Press.

Molenberghs, G., & Kenward, M. G. (2007). Missing 
data in clinical studies. Chichester, UK: John 
Wiley & Sons, Ltd.

Molenberghs, G., & Verbeke, G. (2005). Models 
for discrete longitudinal data. New York, NY: 
Springer.

Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s 
guide (Version V5.1) [Computer software]. Los 
Angeles, CA: Muthén & Muthén.

Petrin, R. A. (2006). Item nonresponse and multiple 
imputation for hierarchical linear models. 
Paper presented at the annual meeting of the 
American Sociological Association, Montreal 
Convention Center, Montreal, Quebec, Canada 
[On-line]. Available: http://www.allacademic.
com/meta/p102126_index.html

Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects 
models in S and S-PLUS. New York, NY: 
Springer.

Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., 
& Solenberger, P. (2001). A multivariate tech-
nique for multiply imputing missing values 
using a sequence of regression models. Survey 
Methodology, 27, 85–95.

Rasbash, J., Steel, F., Browne, W., & Prosser, B. (2005). 
A user’s guide to MLwiN Version 2.0 [Computer 
software]. Bristol, UK: Centre for Multilevel 
Modelling, University of Bristol.

Rässler, S. (2002). Statistical matching. A frequen-
tist theory, practical applications, and alter-
native Bayesian approaches. New York, NY: 
Springer.

Raudenbush, S. W., Bryk, A. S., & Congdon, R. (2008). 
HLM 6 [Computer software]. Chicago, IL: SSI 
Software International.

Roudsari, B., Field, C., & Caetano, R. (2008). Clustered 
and missing data in the US National Trauma 
Data Bank: Implications for analysis. Injury 
Prevention, 14, 96–100.

Rubin, D. B. (1976). Inference and missing data. 
Biometrika, 63, 581–590.

Rubin, D. B. (1986). Statistical matching using file 
concatenation with adjusted weights and mul-
tiple imputations. Journal of Business Economics 
and Statistics, 4, 87–94.

Rubin, D. B. (1987). Multiple imputation for nonre-
sponse in surveys. New York, NY: Wiley.

Rubin, D. B. (1996). Multiple imputation after 
18 + years. Journal of the American Statistical 
Association, 91, 473–489.

Rubin, D. B., & Schafer, J. L. (1990). Efficiently cre-
ating multiple imputations for incomplete 
multivariate normal data. 1990 Proceedings of 
the Statistical Computing Section, American 
Statistical Association, 83–88.

Schafer, J. L. (1997). Analysis of incomplete multivari-
ate data. London, UK: Chapman & Hall.

Schafer, J. L., & Schenker, N. (2000). Inference 
with imputed conditional means. Journal 
of the American Statistical Association, 449, 
144–154.

Schafer, J. L., & Yucel, R. M. (2002). Computational strat-
egies for multivariate linear mixed-effects mod-
els with missing values. Journal of Computational 
and Graphical Statistics, 11, 437–457.

Scharfstein, D. O., Rotnitzky, A., & Robins, J. M. 
(1999). Adjusting for nonignorable drop-out 
using semiparametric nonresponse models. 
Journal of the American Statistical Association, 
94, 1096–1120.

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel 
analysis. An introduction to basic and advanced 
multilevel modeling. London, UK: Sage 
Publications Ltd.

SPSS Inc. (2008). SPSS 17.0 base user’s guide [Com
puter software]. Chicago, IL: SPSS Inc.

StataCorp LP (2008). STATA 10 user’s guide [Com
puter software]. College Station, TX: STATA 
Press.

Stoop, I. A. L. (2005). The hunt for the last respon-
dent: Nonresponse in sample surveys. Rijswijk, 
The Netherlands: Sociaal en Cultureel 
Planbureau.

RT21067_C010.indd   195 3/5/10   12:33:43 PM



196  •  Stef van Buuren

Thomas, N., & Gan, N. (1997). Generating multiple 
imputations for matrix sampling data analyzed 
with item response models. Journal of Educational 
and Behavioral Statistics, 22, 425–445.

Van Buuren, S. (2007). Multiple imputation of discrete 
and continuous data by fully conditional speci-
fication. Statistical Methods in Medical Research, 
16, 219–242.

Van Buuren, S., Boshuizen, H. C., & Knook, D. L. 
(1999). Multiple imputation of missing blood 
pressure covariates in survival analysis. Statistics 
in Medicine, 18, 681–694.

Van Buuren, S., Brand, J. P. L., Groothuis-
Oudshoorn, C. G. M., & Rubin, D. B. (2006). 
Fully conditional specification in multivariate 
imputation. Journal of Statistical Computation 
and Simulation, 76, 1049–1064.

Van Buuren, S., & Groothuis-Oudshoorn, K. (2000). 
Multivariate imputation by chained equations: 
MICE V1.0 user’s manual. (PG/VGZ/00.038 
ed.) Leiden, The Netherlands: TNO Quality of 
Life.

Verbeke, G., & Molenberghs, G. (2000). Linear mixed 
models for longitudinal data. New York, NY: 
Springer.

Yucel, R. M. (2008). Multiple imputation inference for 
multivariate multilevel continuous data with 
ignorable non-response. Philosophical Transac
tions of the Royal Society A, 366, 2389–2403.

Yucel, R. M., Schenker, N., & Raghunathan, T. E. 
(2006). Multiple imputation for incomplete 
multilevel data with SHRIMP. Online citation 
[On-line]. Available: http://www.umass.edu/
family/pdfs/talkyucel.pdf

Zaidman-Zait, A., & Zumbo, B. D. (2005). Multilevel 
(HLM) models for modeling change with 
incomplete data: Demonstrating the effects of 
missing data and level-1 model mis-specification. 
Paper presented at the Hierarchical Linear 
Modeling (SIG) of the American Educational 
Research Association conference April 2005 in 
Montreal, Quebec, Canada. [On-line].

Zeger, S. L., & Karim, M. R. (1991). Generalized linear 
models with random effects: A Gibbs sampling 
approach. Journal of the American Statistical 
Association, 86, 79–86.

Zhang, D. (2005). A Monte Carlo investigation of 
robustness to nonnormal incomplete data of 
multilevel modeling. College Station, TX: Texas 
A&M University.

RT21067_C010.indd   196 3/5/10   12:33:43 PM


